PEMODELAN ENDAPAN NIKEL LATERIT, KABUPATEN MOROWALI, PROVINSI SULAWESI TENGAH
DOI:
https://doi.org/10.33536/jg.v2i01.1322Keywords:
Ni, sediment, block model, level,, surpacAbstract
Making the block model must be very careful to generate a detailed geological interpretation that can be converted into a model to be known deposition of a material excavated in the area. The purpose of this study was to determine the model of the condition of lateritic nickel deposit in the form of 2- dimensional and 3-dimensional by using Surpac software applications. By way of inputting the database consists of the assay data, collar, survey, and lithology. Model 2-dimensional cross-section or cross section is divided into eight cross-section of 37 drill point. 3-dimensional model image overburden does not include all of the drill point means the block models produced uneven. 3- dimensional image of ore models all include all of the drill point. For the three-dimensional model image bedrock there are several levels of Ni in the bedrock nearing> 0.9% but keberedaannya very
small. Cross section of the cross section line 1 to line 8 it appears that not all boreholes have a zone over burden and bedrock zones. Picture 3-dimensional model of over-burden no means covers all of the drill point block models produced uneven, this is due to the Ni content level at this stage of drilling has been over> 0.9%
Downloads
References
Altin, M., 2011. Identifikasi Sebaran Nikel Laterit dan Volume Bijih Nikel, PT. Vale Indonesia, Bandung.
Annels, A. E., 1991. Mineral DepositEvaluation: A Practical Approach, Chapman & Hall, London.
Bankes., 2003. Estimation of mineral resources and mineral reserves best practice
guidelines, Ensiklopedi Pertambangan Edisi 3, Puslitbang Teknologi Mineral.
Boldt., 1967.The Winning Of Nikel: Its Geology, Mining and Extractive Metallurgy, D Van Nostrand Company, INC.
Buchanan, M.F. 1807. A Journey From Madras Through the Countries Of Mysore. Canada and Malabar, Vol. 3
Butt and Zeegers., 1992.Genesis of supergene gold deposits in the lateritic regolith of the yilgarn block, Western Australia.
Butt, C., R. M., and Zeegers H. 1992. Regolith exploration geochemistry in tropical and subtropical terrains. Handbook of Exploration Geochemistry 4. Amsterdam Amsterdam. Elsevier.
Darijanto, T., 1986.Skema Pembentukan Endapan Nikel Laterit, Bandung.
Hasanudin., 1992. Aliran Air tanah Akan Memberikan Mineral-mineral Baru
Pada Proses Pengendapan kembali, Jakarta.
JORC(the Australasian Joint Ore Reserves Committee),2012. Australasian code for reporting of exploration results, minerals resources and ore reserves. Australian Institute of Geoscientists: Australia.
Katili. J. A., 2007.Harta Bumi Indonesia, Grasindo, jakarta.
Masuara, A., 2008. Evaluasi Kadar Produksi Nikel Laterit, PT. Antam Tbk. Yogyakarta.
Nugroho, H. 2014. Pemodelan Tiga Dimensi Potensi Nikel Laterit, Hal 57- 61. Jakarta. PT. Antam Tbk.
Rusmana. 1933. Geologi Regional Lembar Lasusua – Kendari. Bandung. P3G.
Rusmana., 1933.Geologi Regional Lembar Lasusua – Kendari, P3G, Bandung.
Smith, 1992, Regolith-Landform Relationship In The Bootle Creek Orientation Study. Western Australia.
Smith., 1992.Regolith-Landform Relationship In The Bootle Creek Orientation Study, Western Australia.
Sukanddarumidi. 2007. Geologi Mineral Logam. Yogyakarta. UGM.
Sundari,W. 2012. Analisis Data Eksplorasi Nikel Laterit Untuk Estimasi Cadangan dan Perencanangan Pit. Yogyakarta.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jurnal Geomine

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.