Effect of Leaching Time on Dissolution of Gold Metal (Au) in Gold Ore Deposits by Hydrometallurgical Process
DOI:
https://doi.org/10.33536/jg.v10i02.1520Keywords:
Leaching, gold, aqua regia, Au concentrationAbstract
One of Indonesia’s potential gold ore deposits is found in the Bolaang Mongondow area of North Sulawesi Province. This research is one of the initial studies conducted to determine the metal content of gold in ore deposits based on the results of Au extraction using aqua regia. It is known that several operating parameters determine the success rate of the leaching process. One of these parameters is the leaching time. The leaching time ranges used in the study were 5, 10, 20, 60, and 120 minutes. Based on the variation of the leaching time applied to the leaching process, it will also be known how much mass of dissolved Au metal is. The leached filtrate obtained was then analyzed for its concentration using AAS (Atomic Absorption Spectrometry) instrument. The AAS data were then processed using x and y curves to obtain the optimum leaching time, and the mass of dissolved Au metal was obtained using the equation. The results showed that the optimal time for the hydrometallurgical process in gold ore deposits was 120 minutes with an Au concentration of 1.67 mg/L.
Downloads
References
Boyle, R.W., 1979. The geochemistry of gold and its deposits. Geological Survey of Canada. Bulletin, 280, p.584.
Chao, T.T. and Sanzolone, R.F., 1992. Decomposition techniques. Journal of Geochemical Exploration, 44(1-3), pp.65-106.
Gupta, Chiranjib Kumar. (2003). Chemical Metallurgy: Principles and Practices. Weinhem: WILEY-VCH.
Guzman, L., Segarra, M., Chimenos, J.M., Cabot, P.L. and Espiell, F., 1999. Electrochemistry of conventional gold cyanidation. Electrochimica acta, 44(15), pp.2625-2632.
Harjanto, A., Sutanto, S., Sutarto, S., Subandrio, A., Suasta, I., Hartono, G., ... & Rosdiana, R. (2016). Alterasi Akibat Proses Hirothermal di Bolaang Mongondow, Provinsi Sulawesi Utara. EKSPLORIUM, Buletin Pusat Teknologi Bahan Galian Nuklir, 37(1), 27-40.
Lutvi, M. and Damayanti, R., 2009. Karakterisasi Merkuri dalam Sedimen dan Air Pada Pengolahan Tailing Amalgamasi di Kegiatan Pertambangan Emas Rakyat Secara Sianidasi.
Marsden, J.O. and House, C.I., 2006. The chemistry of gold extraction, Society for Mining, Metallurgy, and Exploration. Inc.: Littleton, CO, USA, p.84.
Muhammad, I., Triantoro, A. and Novianti, Y.S., 2020. Optimasi Kondisi Pelarutan Logam Au Dalam Endapan Placer Dengan Proses Hidrometalurgi. Jurnal Geomine, 7(3), p.162.
Park, Y.J. and Fray, D.J., 2009. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous materials, 164(2-3), pp.1152-1158.
Rofika, F. and Agung, R.T., 2018. Proses Hidrometalurgi Menggunakan Pelarut Aqua Regia Pada Recovery Logam Emas (Au) Limbah Elektronik PCB HP. Jurnal Envirotek, 9(1).
Steele, I.M., Cabri, L.J., Gaspar, J.C., McMahon, G., Marquez, M.A. and Vasconcellos, M.A., 2000. Comparative analysis of sulfides for gold using SXRF and SIMS. The Canadian Mineralogist, 38(1), pp.1-10.
Trisunaryanti, Wega., dkk. (2002). Studi Pengaruh Matriks pada Analisis Ni dan Pd secara AAS dalam Destruat Katalis Hidrorengkah Menggunakan Akua Regia dan H2SO4. Universitas Gadjah Mada. Yogyakarta.
Tuncuk A., Stazi, V., Akcil, A., Yazici, E.Y., Deveci, H. (2012). Aqueous Metal Recovery Techniques from E-Scrap: Hydrometallurgy in Recycling. Mineral Engineering 25. Hlm. 28-37.
Vogel. (1979). Bagian I: Buku Teks Analisis Anorganik Kualitatif Makro dan Semimikro. (Alih Bahasa: Ir. L. Setiono dan Dr. A. Hadyana Pudjaatmaka). Jakarta: PT. Kalman Media Pustaka
Widodo, W., 2008. Pengaruh Perlakuan Amalgamasi Terhadap Tingkat Perolehan Emas dan Kehilangan Merkuri. RISET Geologi dan Pertambangan, 18(1), pp.47-53.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Jurnal Geomine

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.