PENERAPAN SISTEM INFORMASI GEOGRAFIS UNTUK MENGIDENTIFIKASI TINGKAT BAHAYA LONGSOR DI KEC. SABBANG, KAB. LUWU UTARA, PROV. SULAWESI SELATAN

Authors

  • Alam Budiman Thamsi
  • Habibie Anwar Jurusan Teknik Pertambangan, Universitas Muslim Indonesia
  • Suriyanto Bakri Jurusan Teknik Pertambangan, Universitas Muslim Indonesia
  • Harwan Jurusan Teknik Pertambangan, Universitas Muslim Indonesia
  • Muh. Idris Juradi Jurusan Teknik Pertambangan, Universitas Muslim Indonesia

DOI:

https://doi.org/10.33536/jg.v7i01.1305

Keywords:

Geographic information system, Disaster mitigation, Sabbang District

Abstract

Natural disasters are events that need to be carried out more in-depth research to minimize losses caused by disasters.  This study aims to determine the extent of landslide-prone areas, the level of landslide disaster areas and foktor that can cause landslides. The research method is carried out using a geographic information system (GIS) application which consists of rainfall data, land use, slope, soil type, lithology of rock, landform and geological structure. The data is then scored to obtain an area of landslide hazard level. The results obtained four zones of landslide hazard level, namely a low landslide hazard zone with an area of 3.656 Ha, a moderate landslide hazard zone with an area of 22.628 Ha, a high landslide hazard zone with lus 42.063 Ha and a landslide hazard zone of 331 Ha. The results obtained identified that the potential of landslide hazard camels was caused by high rainfall of 3826 mm / year. The wide slope area of 40% to 100% is also a factor that causes potential landslides.

 

Downloads

Download data is not yet available.

References

Dahal, B. K. dan Dahal, R. K. (2017) “Landslide hazard map: tool for optimization of low-costmitigation,” Geoenvironmental Disasters. Geoenvironmental Disasters, 4(1), hal. 8. doi: 10.1186/s40677-017-0071-3.

Dibyosaputro, S. (2016) “Landform Control On Settlement Distribution Pattern in Progo Delta, Indonesia,” 47(2), hal. 187–193.

Hartono, R. (2017) “Applying Remote Sensing Technology and Geographic Information Systemin Batu, East Java,” 49(2).

Hermon Dedi (2015) “Geografi Bencana Alam,” in. Depok: Rajawali Pers.

Iovine, G. dan Cohen, D. (2014) “Advanced methods in landslide modelling,” Natural Hazards,73(1), hal. 1–4. doi: 10.1007/s11069-014-1320-3.

Iwahashi, J. dan Yamagishi, H. (2017) “Spatial Comparison of Two High-resolution Landslide Inventory Maps Using GIS---A Case Study of the August 1961 and July 2004 Landslides Caused by Heavy Rainfalls in the Izumozaki Area, Niigata Prefecture, Japan,” in Yamagishi, H. dan Bhandary, N. P. (ed.) GIS Landslide. Tokyo: Springer Japan, hal. 13–29. doi: 10.1007/978-4-431-54391-6_2.

Komac, M. dan Auflič, M. J. (2017) “Modelling a Landslide Probability Through Time as a Basis for the Landslide Hazard Forecast System,” in Yamagishi, H. dan Bhandary, N. P. (ed.) GIS Landslide. Tokyo: Springer Japan, hal. 45–69. doi: 10.1007/978-4-431-54391-6_4.

Nasiah dan Invanni, I. (2014) “Identifikasi Daerah Rawan Longsor Sebagai Upaya Penanggulangan Bencana di Kabupaten Sinjai,” Jurnal Sainsmat, III(2), hal. 109–121.

Ngadisih et al. (2017) “Landslide Inventory: Challenge for Landslide Hazard Assessment in Indonesia,” in Yamagishi, H. dan Bhandary, N. P. (ed.) GIS Landslide. Tokyo: Springer Japan, hal. 135–159. doi: 10.1007/978-4-431-54391-6_8.

Pradhan, B., Lee, S. dan Buchroithner, M. F. (2009) “Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping,” Applied Geomatics, 1(1–2), hal. 3–15. doi: 10.1007/s12518-009-0001-5.

Qiu, C. dan Mitani, Y. (2017) “Development of a GIS-Based 3D Slope Stability Analysis System for Rainfall-Induced Landslide Hazard Assessment,” in Yamagishi, H. dan Bhandary, N. P. (ed.) GIS Landslide. Tokyo: Springer Japan, hal. 71–93. doi: 10.1007/978-4-431-543916_5.

Raja, N. B. et al. (2017) “Landslide susceptibility mapping oftheSeraRiverBasin using logistic regression model, ”Natural Hazards, 85(3), hal.1323–1346. doi: 10.1007/s11069-016-25917.

Simandjuntak, T. O. Et al. (1991) “Geologi Lembar Malili, Sulawesi.”

Susanti P.D, Miardini Ariana (2017) “Analisi Kerentanan Tanah Longsor Sebagai DasarMitigasi di Kabupaten Banjarnegara,” Jurnal Penelitian Pengelolaan Daerah Aliran Sungai, 1(1), hal. 49–59.

Timilsina, M. et al. (2017) “Large-Scale Landslide Inventory Mapping in Lesser Himalaya of Nepal Using Geographic Information System,” in Yamagishi, H. dan Bhandary, N. P. (ed.) GIS Landslide. Tokyo: Springer Japan, hal. 97–112. doi: 10.1007/978-4-431-54391-6_6.

Wang, H. B. et al. (2017) “Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility,” Geoenvironmental Disasters, 4(1), hal. 15. doi: 10.1186/s40677-017-0076-y.

Yamagishi, H. (2017) “Identification and Mapping of Landslides,” in Yamagishi, H. dan Bhandary, N. P. (ed.) GIS Landslide. Tokyo: Springer Japan, hal. 3–9. doi: 10.1007/978-4431-54391-6_1.

Downloads

Published

30-04-2019

Issue

Section

Articles

How to Cite

PENERAPAN SISTEM INFORMASI GEOGRAFIS UNTUK MENGIDENTIFIKASI TINGKAT BAHAYA LONGSOR DI KEC. SABBANG, KAB. LUWU UTARA, PROV. SULAWESI SELATAN . (2019). Jurnal Geomine, 7(01), 45-55. https://doi.org/10.33536/jg.v7i01.1305

Similar Articles

31-40 of 46

You may also start an advanced similarity search for this article.