Analisis Probability Distribution Function terhadap Perubahan Tutupan Lahan dan Fraksi Awan di Indonesia

Authors

  • Jeddah Yanti
  • Chian-Yi Liu Research Center for Environmental Changes, Academy Sinica, Taiwan
  • Togi Tampubolon Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Medan, Indonesia

DOI:

https://doi.org/10.33536/jg.v10i02.1522

Keywords:

Land cover, cloud fraction, MODIS

Abstract

Land use exceeds the standard of suitability and availability over Indonesia, which causes uncontrolled land acquisitions every year. Changes in land use can be controlled by monitoring changes in land cover and the effect of land changes on hydrological cycle components such as cloud fraction. The land cover and cloud fraction distribution were identified using the NDVI index and cloud fraction parameters. The NDVI index value in Indonesia is 0.73 to 0.81, representing land cover in Indonesia, which is relatively high. Meanwhile, the cloud fraction showed the lowest value between 0.6 to 0.7 in summer and experienced the highest cloud cover at the peak of the rainy season. The analysis of the distribution of both land cover and cloud cover shows the consistency of value stability in the rainy season starting from November to May from 2003 to 2016. The correlation value based on the spatial analysis between the NDVI anomaly and the cloud fraction parameter anomaly has a value range of around -0. 8 to 0.8. The correlation between the NDVI anomaly and the cloud parameter anomaly has a negative correlation in Indonesia, including Sumatra, Kalimantan, Java and Bali, Sulawesi, Nusa Tenggara, Maluku, and Papua. Sumatra, Kalimantan, and Papua islands have a prominent role with a negative correlation between the NDVI anomaly and the cloud fraction parameter anomaly. It is feared to be caused by changes in land use to deforestation of natural area conservation areas into oil palm plantations and mining.

Downloads

Download data is not yet available.

References

Burnett, M. and Chen, D. 2021. The Impact of Seasonality and Land Cover on the Consistency of Relationship between Air Temperature and LST Derived from Landsat 7 and MODIS at a Local Scale: A Case Study in Southern Ontario, Land, Vol. 10, No. 7.

Campbell, J.B. and Wynne, R.H. 2011. Introduction to Remote Sensing Fifth Edition, Guilford Press, ISBN: 1572300426, 9781572300422.

Duveiller, G., J. Hooker and A. Cescatti. 2018. The mark of vegetation change on Earth’s surface energy balance, Nature Communication, 9, 679, doi: 10.1038/s41467-017-02810-8.

FAO. 2018. Productive and healthy forests are crucial for meeting sustainable development, climate, land and biodiversity goals,http://www.fao.org/news/story/en/item/1103556/icode/ [diakses pada 01 November 2021].

Higginbottom, T.P. and E. Symeonakis. 2014. Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Directions, Remote Sens, 6, 9552- 9575, doi:10.3390/rs6109552.

Igel, A.L., Van den Heever, S.C. and Johnson, J.S. 2018. Meteorological and Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution in a Dry Environment, Journal of Geophysical Research Atmospheres, 123, pp. 22-37, doi: 10.1002/2017JD027339.

Kementerian Lingkungan Hidup dan Kehutanan. 2020. Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia tentang Rencana Strategis Kementerian Lingkungan Hidup dan Kehutanan Tahun 2020-2021. Jakarta: Kementerian Lingkungan Hidup dan Kehutanan.

Liu, C.-Y., C.-H. Chiu, P.-H. Lin, and M. Min. 2020. Comparison of Cloud‐Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and radiosonde, Journal of Geophysical Research: Atmospheres, doi: 10.1029/2020JD032683

Margono, B.A., Potapov, P.V., Turubanova, S., Stolle, F. & Hansen, M.C. 2014. Primary forest cover loss in Indonesia over 2000–2012, Nature Climate Change, 4, pp. 730–735, doi: 10.1038/nclimate2277.

Platnick, S., Meyer, K.G., King, M.D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G.T., Zhang, Z., Hubanks, P.A., Holz, R.E., Yang, P., Ridgway, W.L., Riedi, J. 2017. The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples from Terra and Aqua, IEEE Transactions on Geoscience and Remote Sensing, 55, 1, pp. 502-525, doi: 10.1109/TGRS.2016.2610522.

Que, V., Prasetyo, S., & Fibriani, C. 2019. Analisis Perbedaan Indeks Vegetasi Normalized Difference Vegetation Index (NDVI) dan Normalized Burn Ratio (NBR) Kabupaten Pelalawan Menggunakan Citra Satelit Landsat 8, Indonesian Journal of Computing and Modeling, 2(1), 1-7.

Sencaki, D.B., Bangun, M.S., Udiana, W.D. 2013. Analisa relasi perubahan tutupan lahan dan suhu permukaan tanah di kota surabaya menggunakan citra satelit multispektral tahun 1994 – 2012. Jurnal Teknik Pomits, Vol. 2, No. 1.

Setiawan, Y. and Yoshino, K. 2020. Spatial modeling on land use change in regional scale of Java Island based-on biophysical characteristics. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), Vol. 10, No. 3, pp. 511-523.

Tampubolon, T., Yanti, J. dan Liu, C.-Y. 2020. Spatial Correlation between Land Surface Properties and Cloud Characteristics in Indonesia. Journal of Physics: Conference Series, 1428.

Teuling, A. J., Taylor, C.M., Meirink, J.F., Melsen, L.A., Miralles, D.G., van Heerwaarden, C.C., Vautard, R., Stegehuis, A.I., Nabuurs, G-J. and de Arellano, J.V-G. 2017. Observational evidence for cloud cover enhancement over western European forests, Nature Communications, 8, 14065, pp: 1-7, doi: 10.1038/ncomms14065.

Vermote, E.F. 2015. MODIS Surface Reflectance User’s Guide Collection 6. UN: USGS.

Winkler, K., Fuchs, R., Rounsevell, M. 2021. Global land use changes are four times greater than previously estimated. Nat Commun, Vol. 12, No. 2501.

Downloads

Published

31-08-2022

How to Cite

Analisis Probability Distribution Function terhadap Perubahan Tutupan Lahan dan Fraksi Awan di Indonesia. (2022). Jurnal Geomine, 10(02), 132-144. https://doi.org/10.33536/jg.v10i02.1522