Delignification of Lignocellulosic Content of Sugarcane Bagasse (Saccarum officinarium) with Variations in Size and Pretreatment Time

Authors

  • Andi Asdiana Irma Sari Yusuf Politeknik ATI Makassar
  • Sakinah Islamiati Abadi Politeknik ATI Makassar
  • Sariwahyuni Politeknik ATI Makassar

DOI:

https://doi.org/10.33096/jcpe.v9i2.976

Keywords:

Bagasse, Lignocellulose, Delignification

Abstract

Sugarcane bagasse (Saccarum officinarium) is a byproduct of the sugar production process and holds potential as a raw material for bioethanol production due to its lignocellulose content. Lignocellulose contains important components such as cellulose, hemicellulose, and lignin. This study focuses on the delignification of sugarcane bagasse (Saccarum officinarium) through a combination of mechanical and autoclave treatments, with variations in particle size and heating time. The goal of this study is to reduce the lignin content and increase the proportion of cellulose and hemicellulose, key components for producing valuable products  for instance bioethanol. In this research, sugarcane bagasse was processed with particle sizes of 60, 70, and 80 mesh, and heated in an autoclave for 30, 45, and 60 minutes. The Chesson-Datta method was used to analyze the lignocellulose content of the bagasse after the delignification process. The results showed that the best outcome was achieved with a particle size of 80 mesh and a heating time of 60 minutes, yielding the lowest lignin content at 14.27%, while cellulose and hemicellulose reached 44.3% and 26.75%, respectively. This indicates that variations in particle size and heating duration significantly affect the effectiveness of the delignification process. Optimizing these two parameters is crucial for increasing cellulose and hemicellulose content while reducing lignin. Further research is expected to develop more effective pretreatment techniques to enhance the efficiency of sugarcane bagasse biomass conversion for industrial applications

References

Z. Ma and Y. Liu, "Advances in lignocellulosic biomass pretreatment: A review," *Bioresource Technology*, vol. 344, p. 126232, 2022, doi: 10.1016/j.biortech.2021.126232.

R. Kumar and C. E. Wyman, "Effects of particle size on the hydrolysis of cellulose by cellulase," *Biotechnology and Bioengineering*, vol. 111, no. 4, pp. 663-669, 2014, doi: 10.1002/bit.25101.

Sutini, Widihastuty, Y. R., Murdowo, M. R., and A. N. Ramadhani, "Optimasi Produksi Fermentable Sugar dengan Hidrolisis Enzimatis Limbah Daun Nanas (Ananas comosus [L] Merr) Sebagai Bahan Baku Biofuel Ramah Lingkungan," *Proceedings National Conference PKM Center*, pp. 119-123, 2020.

Sutikno, Marniza, and N. Sari, "Pengaruh Perlakuan Awal Basa dan Hidrolisis Asam terhadap Kadar Gula Reduksi Ampas Tebu," *Jurnal Teknologi Industri & Hasil Pertanian*, vol. 20, no. 2, pp. 65-72, 2015.

F. Ni'mah, B. D. Argo, M. Lutfi, D. M. Maharani, and A. W. Putranto, "Perbandingan Proses Pretreatment Degradasi Lignin Jerami Padi Dengan Wet Milling dan Dry Milling Pada Produksi Bioetanol," *Jurnal Teknologi Pertanian*, vol. 15, no. 2, pp. 77-84, 2014.

F. Junianti, *Produksi Hidrogen dari Sabut Kelapa melalui Pretreatment Air Subkritis dan Hidrolisis Enzimatik*, Surabaya: Institut Teknologi Sepuluh Nopember, 2016.

Y. Zhang and J. Zhang, "Recent advances in biomass fractionation and delignification strategies," *Green Chemistry*, vol. 25, no. 4, pp. 1503-1524, 2023, doi: 10.1039/D3GC00241G.

Munawara, *Pengaruh Waktu Pretreatment terhadap Kandungan Lignoselulosa pada Ampas Kelapa Sebagai Bahan Baku Pembuatan Bioetanol*, Makassar: Politeknik ATI Makassar, 2022.

N. L. Widyawati and B. D. Argo, "Pemanfaatan Microwave dalam Proses Pretreatment Degradasi Lignin Ampas Tebu (Bagasses) pada Produksi Bioetanol," *Jurnal Teknologi Pertanian*, vol. 15, no. 1, pp. 1-6, 2014.

Y. Zhao and Y. Xie, "Effects of Particle Size on Catalytic Reaction Rates: A Comprehensive Review," *Chemical Engineering Journal*, vol. 413, p. 128599, 2021, doi: 10.1016/j.cej.2020.128599.

J. Song and Z. Yao, "Nanoparticle Size and Surface Area as Determinants of Catalytic Activity in Chemical Reactions," *Journal of Physical Chemistry C*, vol. 124, no. 10, pp. 5337-5345, 2020, doi: 10.1021/acs.jpcc.9b11468.

Y. Lee and H. Kim, "Particle Size and Reactivity in Solid-State Reactions: Experimental and Theoretical Approaches," *Journal of Materials Chemistry A*, vol. 3, no. 12, pp. 6364-6370, 2015, doi: 10.1039/c4ta06123f.

F. Guo and Q. Zhang, "Impact of Pretreatment Time on Delignification and Cellulose Preservation in Lignocellulosic Biomass," *Bioresource Technology*, vol. 330, p. 124995, 2021, doi: 10.1016/j.biortech.2021.124995.

Z. Liu and H. Chen, "Optimization of Pretreatment Time for Enhanced Delignification of Biomass: Balancing Lignin Removal and Cellulose Preservation," *Industrial Crops and Products*, vol. 138, p. 111576, 2019, doi: 10.1016/j.indcrop.2019.111576.

G. Kaur and A. Arora, "Effects of Pretreatment Duration on Delignification Efficiency and Enzymatic Hydrolysis of Agricultural Residues," *Renewable Energy*, vol. 121, pp. 699-708, 2018, doi: 10.1016/j.renene.2018.01.017.

M. R. Hidayat, "Teknologi Pretreatment Bahan Lignoselulosa Dalam Proses Produksi Bioetanol," *BIOPROPAL INDUSTRI*, vol. 4, pp. 33-48, 2013.

W. Sulaiman, Sugiyarto, and E. Mahajoeno, "Biodelignification of Coconut Wood Sawdust Using Pleuratus Sapidus," *Seminar Nasional Edusainstek*, pp. 37-45, 2018.

A. Fauziah, Rodiansono, and Sunardi, "Analisis Spektroskopi Inframerah Transformasi Fourier (FTIR) dan Perubahan Warna Lignoselulosa Alang-alang (Imperata cylindria) Setelah Pretreatment Menggunakan Asam Encer," *Konversi*, vol. 8, pp. 10-16, 2019

A. G. Hansen and B. L. Peterson, *Lignocellulose Degradation in Autoclave Systems: Chemical Reactions and Kinetics*, 3rd ed. New York, NY: Springer, 2020, pp. 100-105.

J. Doe, “Mechanical Pretreatment in Lignocellulosic Biomass: Effects on Sugarcane Bagasse,” Bioresource Technology, vol. 150, no. 4, pp. 105-110, 2020. DOI: 10.1016/j.biortech.2020.04.054

Novia, D. Wijaya, and P. Yanti, "Pengaruh Waktu Delignifikasi Terhadap Lignin dan Waktu SSF Terhadap Etanol Pembuatan Bioetanol Dari Sekam Padi," *Jurnal Teknik Kimia*, vol. 1, no. 23, pp. 19-27, 2017.

A. A. Yusuf, *Rekayasa Proses Produksi Xilitol Secara Mikrobial dari Tandan Kosong Sawit*, Bandung: Institut Teknologi Bandung, *AIP Conference Proceedings*, vol. 2085, no. 1, pp. 1-8, 2018.

M. Yu, Z. Wang, J. Wang, and J. Chen, "Effects of particle size on the hydrolysis and delignification of rice straw: Pretreatment with alkali solution and hydrogen peroxide," BioResources, vol. 11, no. 3, pp. 7480-7494, Sept. 2016

E. Mardawati, D. N. Daulay, D. W. Wira, and E. Sukarminah, "Pengaruh Konsentrasi Sel Awal dan pH Medium pada Fermentasi Xilitol dari Hidrolisat Tandan Kosong Sawit," *Jurnal Teknologi dan Manajemen Agroindustri*, vol. 7, pp. 23-30, 2018.

S. S. Amran, *Delignifikasi Ampas Kelapa dalam Pembuatan Bioetanol Menggunakan Pretreatment Fisika*, Makassar: Politeknik ATI Makassar, 2022.

M. R. Bina, Syaaruddin, L. O. Sahara, and M. Sayuti, "Kandungan Hemiselulosa, Selulosa dan Lignin Dalam Silase Ransum Komplit dengan Taraf Jerami Sorgum (Sorghum bicolor (L.) Moench) yang Berbeda," *Gorontalo Journal of Equatorial Animals*, vol. 2, pp. 44-53, 2023.

R. Smith and J. Brown, “Hemicellulose Structures and Their Interactions in Plant Cell Walls: Implications for Biomass Deconstruction,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 456-465, 2018.

A. G. Aditama, M. Farid, and H. Ardhyananta, "Isolasi Selulosa dari Serat Tandan Kosong Kelapa Sawit untuk Nano Filter Komposit Absorpsi Suara: Analisis FTIR," *Jurnal Teknik ITS*, vol. 6, pp. 228-231, 2017.

Downloads

Published

30-11-2024

How to Cite

Yusuf, A. A. I. S., Abadi, S. I., & Sariwahyuni. (2024). Delignification of Lignocellulosic Content of Sugarcane Bagasse (Saccarum officinarium) with Variations in Size and Pretreatment Time. Journal of Chemical Process Engineering, 9(2), 90–98. https://doi.org/10.33096/jcpe.v9i2.976