Evaluasi Kualitas Air pada Sistem Pendinginan PT. XYZ Surabaya: Studi Kasus Cooling Water

Authors

  • Nur Ihda Farikhatin Nisa Universitas PGRI Madiun
  • Nurull Fanani Universitas W.R. Supratman
  • Vevi Maritha Universitas PGRI Madiun

DOI:

https://doi.org/10.33096/jcpe.v8i2.975

Keywords:

Blowdown, Cooling Water, Kerak, Korosi, Pengolahan Air

Abstract

Sistem pendinginan merupakan komponen penting dalam berbagai proses industri yang mempunyai peranan untuk menjaga suhu peralatan dan kinerja proses agar tetap optimal. Kualitas air yang digunakan dalam sistem ini harus mampu memastikan efisiensi operasional dan meminimalkan risiko kerusakan pada peralatan. Analisis kualitas air pada cooling water menjadi sangat penting untuk memantau dan mengendalikan beberapa parameter kunci dalam kualitas air agar tetap dalam batas yang aman dan optimal. Tujuan dari penelitian ini adalah menganalisa kualitas cooling water pada PT. XYZ Surabaya berdasarkan beberapa parameter diantaranya pH, TDS, turbidity, M-alkalinitas, Ca-hardness, total-hardness, LSI (Langelier Saturation Index), dan RSI (Ryznar Stability Index). Metode penelitian yang digunakan terdiri dari tiga tahapan yaitu tahap pengambilan sampel, tahap persiapan, dan tahap analisis. Pengambilan sampel dilakukan dengan mengambil sampel cooling water pada pabrik tersebut. Sedangkan tahap persiapan dilakukan dengan melakukan kalibrasi terhadap alat-alat instrumentasi yang digunakan. Selanjutnya dilakukan tahap analisa terhadap beberapa parameter kualitas air tersebut. Hasil analisa menunjukkan bahwa cooling water PT. XYZ Surabaya memiliki nilai pH, TDS, turbidity, M-alkalinitas, Ca-hardness, total-hardness, LSI, dan RSI berturut-turut sebesar 6,54; 544 ppm; 1,34 NTU; 236,88 ppm; 62 ppm; 16 ppm; -0,77; dan 8,1. Dari hasil yang diperoleh menunjukkan bahwa air memiliki tingkat korosifitas yang tinggi namun tidak terbentuk kerak.

Downloads

Download data is not yet available.

References

D. Pandelidis, W. William, and S. Cetin, “Analysis of Heat and Mass Transfer Potential of a Dew-point Cooling Tower in Different Climatic Conditions,” Int. Commun. Heat Mass Transf., vol. 156, 2024.

Y. Sun, Z. Guan, and K. Hooman, “A Review on the Performance Evaluation of Natural Draft Dry Cooling Towers and Possible Improvements via Inlet Air Spray Cooling,” Renew. Sustain. Energy Rev., vol. 79, no. September 2016, pp. 618–637, 2017, doi: 10.1016/j.rser.2017.05.151.

D. Pandelidis, “Numerical Study and Performance Evaluation of the Maisotsenko Cycle Cooling Tower,” Energy Convers. Manag., vol. 210, no. June 2019, p. 112735, 2020, doi: 10.1016/j.enconman.2020.112735.

D. Pandelidis, M. Drąg, P. Drąg, W. Worek, and S. Cetin, “Comparative Analysis Between Traditional and M-Cycle Based Cooling Tower,” Int. J. Heat Mass Transf., vol. 159, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.120124.

H. I. Abdel-Shafy, M. A. Shoeib, M. A. El-Khateeb, A. O. Youssef, and O. M. Hafez, “Electrochemical Treatment of Industrial Cooling Tower Blowdown Water using Magnesium-rod Electrode,” Water Resour. Ind., vol. 23, 2020, doi: 10.1016/j.wri.2019.100121.

K. Helmi, F. David, P. Di Martino, M. P. Jaffrezic, and V. Ingrand, “Assessment of Flow Cytometry for Microbial Water Quality Monitoring in Cooling Tower Water and Oxidizing Biocide Treatment Efficiency,” J. Microbiol. Methods, vol. 152, no. June, pp. 201–209, 2018, doi: 10.1016/j.mimet.2018.06.009.

S. Kumar et al., “Estimation of Performance Parameters of a Counter Flow Cooling Tower using Biomass Packing,” Therm. Sci. Eng. Prog., vol. 44, no. 1, 2023.

B. K. Naik, V. Choudhary, P. Muthukumar, and C. Somayaji, “Performance Assessment of a Counter Flow Cooling Tower - Unique Approach,” Energy Procedia, vol. 109, no. November 2016, pp. 243–252, 2017, doi: 10.1016/j.egypro.2017.03.056.

M. Shublaq and A. K. Sleiti, “Experimental Analysis of Water Evaporation Losses in Cooling Towers using Filters,” Appl. Therm. Eng., vol. 175, no. December 2019, p. 115418, 2020, doi: 10.1016/j.applthermaleng.2020.115418.

A. Khaloo, M. Vasheghani, and J. Sedeghi, “Contribution of Water-soluble Ions in the Corrosion of Reinforced Concrete Cooling Towers using the Response Surface Method,” Case Stud. Constr. Mater., vol. 20, no. February, 2024, doi: 10.1016/j.cscm.2024.e02966.

F. H. Wang et al., “Bench-scale and Pilot-scale Evaluation of Coagulation Pre-treatment for Wastewater Reused by Reverse Osmosis in a Petrochemical Circulating Cooling Water System,” Desalination, vol. 335, no. 1, pp. 64–69, 2014, doi: 10.1016/j.desal.2013.12.013.

Y. Meng, G. Liu, S. Hou, and H. Chen, “Performance and Economic Analysis of the Cooling Tower Blowdown Water Treatment System in a Coal-fired Power Plant,” Chem. Eng. Res. Des., vol. 201, no. November 2023, pp. 321–331, 2024, doi: 10.1016/j.cherd.2023.11.061.

H. Kurniawanto, N. I. Suwono, E. N. Putri, R. B. Santoso, R. M. Fenesa, and G. S. M. Jaya, “Perencanaan Pemanfaatan Air Blowdown Cooling Tower untuk Supply Make Up Cooling Tower di Bandar Udara International Yogyakarta,” Langit Biru J. Ilm. Aviasi, vol. 2, no. 1, pp. 16–21, 2023.

I. Renaldi, A. D. Juniarti, and A. B. Sulistyo, “Analisa Kualitas Cooling Water Pada Cooling Water System Di Butadiene Plant PT XYZ Dengan Metode Six Sigma Dan PDCA,” J. InTent, vol. 1, no. 1, pp. 45–57, 2018.

N. N. Aini, D. Siswanto, and G. Priyandoko, “Monitoring Kualitas Air pada Cooling Tower untuk Mendukung Pengendalian Proses Blowdown berbasis Internet of Things (IoT),” SinarFe7 Semin. Nas. Fortei Reg. 7, vol. 4, no. 1, pp. 107–111, 2021.

W. Pujianto, H. P. Sudarminto, and R. Taufiqi, “Analisa Kandungan Air Pendingin (Sirkulasi) T. 6520 Dan T.6530 Pada Service Unit III A PT Petrokimia Gresik,” DISTILAT J. Teknol. Separasi, vol. 7, no. 2, pp. 606–612, 2021, doi: 10.33795/distilat.v7i2.276.

D. Paranita, Donda, and D. F. Simatupang, “Determination of Cooling Water Requirement for Plastic Film Extrusion Process at PT. XYZ North Sumatra,” JUSTEK J. Sains dan Teknol., vol. 6, no. 4, pp. 513–518, 2023, [Online]. Available: http://journal.ummat.ac.id/index.php/justek.

Shankar BS, “Determination of Scaling and Corrosion Tendencies of Water through the Use of Langelier and Ryznar Indices,” Sch. J. Eng. Technol., vol. 2, no. SJET, pp. 123–127, 2014, [Online]. Available: www.saspublisher.com.

J. O. Haolat, A. George, M. Issa Suleiman, M. Berthod, and K. Wang, “UV-TiO2 Treatment of the Cooling Water of an Oil Refinery,” J. Water Process Eng., vol. 26, no. August, pp. 176–181, 2018, doi: 10.1016/j.jwpe.2018.10.013.

D. Rubio, C. López-Galindo, J. F. Casanueva, and E. Nebot, “Monitoring and Assessment of an Industrial Antifouling Treatment. Seasonal Effects and Influence of Water Velocity in an Open Once-Through Seawater Cooling System,” Appl. Therm. Eng., vol. 67, no. 1–2, pp. 378–387, 2014, doi: 10.1016/j.applthermaleng.2014.03.057.

O. M. Hafez, M. A. Shoeib, M. A. El-Khateeb, H. I. Abdel-Shafy, and A. O. Youssef, “Removal of Scale Forming Species from Cooling Tower Blowdown Water by Electrocoagulation using Different Electrodes,” Chem. Eng. Res. Des., vol. 136, pp. 347–357, 2018, doi: 10.1016/j.cherd.2018.05.043.

J. N. Hakizimana et al., “Assessment of Hardness, Microorganism and Organic Matter Removal from Seawater by Electrocoagulation as a Pretreatment of Desalination by Reverse Osmosis,” Desalination, vol. 393, pp. 90–101, 2016, doi: 10.1016/j.desal.2015.12.025.

T. Neveux, M. Bretaud, N. Chhim, K. Shakourzadeh, and S. Rapenne, “Pilot Plant Experiments and Modeling of CaCO3 Growth Inhibition by the use of Antiscalant Polymers in Recirculating Cooling Circuits,” Desalination, vol. 397, pp. 43–52, 2016, doi: 10.1016/j.desal.2016.06.018.

Y. Luo, R. Qiu, X. Zhang, and F. Li, “Biofouling Behaviors of Reverse Osmosis Membrane in the Presence of Trace Plasticizer for Circulating Cooling Water Treatment: Characteristics and Mechanisms,” Water Res., vol. 260, 2024.

T. Wagner, P. Saha, H. Bruning, and H. Rijnaarts, “Lowering the Fresh Water Footprint of Cooling Towers: A Treatment-train for the Reuse of Discharged Water Consisting of Constructed Wetlands, Nanofiltration, Electrochemical Oxidation and Reverse Osmosis,” J. Clean. Prod., vol. 364, no. January, p. 132667, 2022, doi: 10.1016/j.jclepro.2022.132667.

Herdini, V. Hadi, and T. Novalina, “Analisis Kesadahan Total (CaCO3), Kalsium (Ca2+), Magnesium (Mg2+) pada Air Sumur Tanah di Jakarta Utara,” TEKNOSAINS J. Sains, Teknol. dan Inform., vol. 10, no. 1, pp. 1–11, 2023, doi: 10.37373/tekno.v10i1.192.

Downloads

Published

30-11-2023

How to Cite

Evaluasi Kualitas Air pada Sistem Pendinginan PT. XYZ Surabaya: Studi Kasus Cooling Water. (2023). Journal of Chemical Process Engineering, 8(2), 140-150. https://doi.org/10.33096/jcpe.v8i2.975