The Effects of Adding CaCOᴣ and Glycerol as Filler in The Synthesis of Bioplastic Made from Corn Starch

Authors

  • Ajeng Listiani Safira Universitas Ahmad Dahlan
  • Nurullia Suffah Universitas Ahmad Dahlan
  • Tri Yuni Hendrawati Universitas Muhammadiyah Jakarta
  • Erna Astuti Universitas Ahmad Dahlan

DOI:

https://doi.org/10.33096/jcpe.v9i1.97

Keywords:

Bioplastics, CaCO3, Filler, Glycerol, Corn starch

Abstract

Plastic is one of the items widely used by the world's population, including in industry. Apart from being cheaper, plastic also has the advantage of being waterproof and having good strength to withstand the load carried. However, plastic has weaknesses in the decomposition process and can cause environmental pollution. Corn has a high percentage of starch content and is easy to cultivate in Indonesia, so corn has the potential to become one of the raw materials used in making bioplastics to reduce the plastic waste produced. This research aims to determine the effect of adding CaCOᴣ and glycerol fillers in synthesizing bioplastics from corn starch. The method applied in this research is pouring the solution. Based on research, the reaction to make bioplastic from corn starch with CaCO3 filler and glycerol is an esterification reaction. The higher the CaCO₃ content in bioplastics, the smaller the percent elongation value produced, the tensile strength properties will decrease, and this will result in the %w loss value decreasing. The low tensile strength is due to the presence of empty holes in the bioplastic product. Meanwhile, more glycerol will cause an increase in the percent elongation value, a decrease in tensile strength, and easy degradation. The bioplastic that has specification close to SNI standards was obtained using 5 ml of glycerol and 2 grams of CaCO₃ for 100 g of corn starch.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik. “Jumlah Penduduk Hasil Proyeksi Menurut Provinsi dan Jenis Kelamin (Ribu Jiwa) 2018-2020,” Badan Pusat Statistik, 26 Oktober 2020. Tersedia: https://www.bps.go.id/id/statistics-table/2/MTg4NiMy/jumlah-penduduk-hasil-proyeksi-menurut-provinsi-dan-jenis-kelamin.html [Diakses: 3 Oktober 2023].

Ratnawati, S. (2020). Processing of Plastic Waste into Alternative Fuels in The Form of Grounded (Pertalastic) Through Pyrolysis Process in Science Laboratory of MTsN 3 West Aceh. Indonesian Journal of Chemical Science and Technology, 3(1), 8-16, 2020.

Harunsyah, M. Y, & Fauzan, R. (2017). Mechanical Properties of Bioplastics Cassava Starch Film with Zinc Oxide Nanofiller as Reinforcement. In IOP Conf. Series: Materials Science and Engineering, 210 (2017) 012015.

Ivanov, V., Viktor, S., & Zubair, A. (2014). Production and Applications of Crude Polyhydroxyalkaonate-Containing Bioplastic from the Organic Fraction of Municipal Solid Waste. International Journal of Environmental Science and Technology, 12(2), 725-738.

Maheswari, R.K., Rani, B., Parihar, S. & Sharma, A.H. (2013). Eco-friendly Bioplastic for Uncontaminated Environment, Research Journal of Chemical and Environmental Science, 1, 44-49.

Coniwanti, P., Laila, L., & Alfira, M.R. (2014). Pembuatan Film Plastik Biodegradabel dari Pati Jagung Dengan Penambahan Kitosan dan Pemplastis Gliserol. Jurnal Teknik Kimia, 20(4), 18-30.

Gujar, S., Pandel, B.& Jethoo, A.S. (2014). Effect of Plasticizer on Mechanical and Moisture Absorption Properties of Eco-Friendly Corn Starch-Based Bioplastic. Nature Environment and Pollution Technology, 13(2), 425-428.

Kamsiati, E. Herawati, H., & Purwani, E.Y. (2017). Potensi Pengembangan Plastik Biodegradable Berbasis Pati Sagu dan Ubi Kayu di Indonesia. Jurnal Penelitian dan Pengembangan Pertanian, 36(2), 67-76.

Yuniarti L.I., Hutomo, G.S., & Rahim, A. (2014). Sintesis dan Karakterisasi Bioplastik Berbasis Pati Sagu (Metroxylon Sp). Agrotekbis, 2(1), 38-46.

Silviana & Rahayu, P. (2017). Pembuatan Bioplastik Berbahan Pati Sagu dengan Penguat Mikrofibril Selulosa Bambu Terdispersi KCl Melalui Proses Sonikasi. Reaktor, 17(3), 151-156.

Afdal, K., Herawati, N. & Hasri. (2022). Pengaruh Konsentrasi Sorbitol sebagai Plasticizer pada Pembuatan Plastik Biodegradable dari Tongkol Jagung. Jurnal Chemica, 23(1), 67-77.

Ghadave, R.V., Das, A., Mahanwar, P. A. & Gadekar, P.T. (2018). Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open Journal of Polymer Chemistry, 8, 21-23.

Hidayat, F., Syaubari, S. & Salima, R. (2020). Pemanfaatan pati tapioka dan kitosan dalam pembuatan plastik biodegradable dengan penambahan gliserol sebagai plasticizer. Jurnal Litbang Industri, 10(1), 33-38.

Agustin, Y. E. & Padmawijaya, K.S. (2016). Sintesis Bioplastik dari Kitosan-Pati Kulit Pisang Kepok dengan Penambahan Zat Aditif. Jurnal Teknik Kimia, 10(2), 40-48.

Hayati, N. & Lazulva. (2018). Preparing of Cornstarch (Zea Mays) Bioplastic Using ZnO metal. Indonesian Journal of Chemical Science and Technology, 1(1), 23-30.

Amalia, D. Saleh, D. & Djonaedi, E. (2020). Synthesis of Biodegradable Plastics Using Corn Starch and Corn Busk as The Fillers as Well as Chitosan and Sorbitol. Journal of Physics: Conference Series 1442 012007.

Lazuardi, G.P. & Cahyaningrum, S.E. (2013). Pembuatan dan Karakterisasi Bioplastik Berbahan Dasar Kitosan dan Pati Singkong dengan Plasticizer Gliserol. Unesa Journal of Chemistry, 2(3), 161-166.

Marichelvam, M.K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 32.

Sen, R., Maan, A., & Pandel, U. (2017). Synthesis and Testing of Corn Starch Based Biodegradable Plastic and Composite. In” 8th International Science, Social Science, Engineering and Energy Conference, Pattaya Beach Thailand.

Amin, Md.R., Chowdhury, M.A., & Kowser, Md.A. (2019). Characterization and Performance Analysis of Composite Bioplastics Synthesized Using Titanium Dioxide Nanoparticles with Corn Starch. Heliyon, 5(8), e02009.

Ozdamar, E.G., & Ates, M. (2018). Rethinking Sustainability: A Research on Starch Based Bioplastic. Journal of sustainable construction materials and technologies, 3(3), 249-260.

Jabeen, N., Majid, I., and Nayik, G.A. (2015). Bioplastics and Food Packaging: A Review. Cogent Food and Agriculture, 1(1), 1-6.

Hidayati, S., Zuidar, A.S., & Ardiani, A. (2015). Aplikasi Sorbitol pada Produksi Biodegradable Film dari Nata De Cassava. Reaktor, 15(3), 196-204.

Kumoro, A.C. & Purbasari, A. (2015). Sifat Mekanik dan Morfologi Plastik Biodegradable dari Limbah Tepung Nasi Aking dan Tepung Tapioka Menggunakan Gliserol Sebagai Plasticizer. Teknik, 35(1), 8-16.

Syafri, E., Kasim, A., Abral, H., & Asben, A. (2017). Effect of Precipitated Calcium Carbonate on Physical, Mechanical and Thermal Properties of Cassava Starch Bioplastic Composites. International Journal on Advanced Science Engineering Information Technology, 7 (5), 1950-1956.

Amaraweera, S.M., Gunathilake, C., Gunawardene, O.H.P., Fernando, N.M.L., Wanninayaka, D.B., Dassanayake, R.S., Manamperi, S.M.R.A., Fernando, C.A.N., Kulatunga, A.K. & Manipura. A. (2021). Development of Starch-Based Materials Using Current Modification Techniques and Their Applications: A Review, Molecules, 26, 6880, 1-30.

Kim, Y. & Jung, C. (2022). Reaction Mechanisms Applied to Starch Modification forBiodegradable Plastics: Etherification and Esterification, International Journal of Polymer Science, 2022(2941406), 1-10.

Sugih, A.K. (2008). Synthesis and Properties of Starch Based Biomaterials, Thesis, University of Groningen, Groningen.

Amin, Md.R., Chowdhury,M.A., & Kowser, Md.A. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch, Heliyon ,5 (2019) e02009.

Hasri, Syahrir, M., & Pratiwi, D.E. (2021). Synthesis and Characterization of Bioplastics Made from chitosan Combined Using Glycerol Plasticize. Indonesian Journal of Fundamental Sciences, 7(2), 110-119.

Downloads

Published

31-05-2024

How to Cite

The Effects of Adding CaCOᴣ and Glycerol as Filler in The Synthesis of Bioplastic Made from Corn Starch. (2024). Journal of Chemical Process Engineering, 9(1), 29-38. https://doi.org/10.33096/jcpe.v9i1.97