Effectiveness of Mg(OH)2/γ-Al2O3 Catalysts on Catalytic Cracking Process
DOI:
https://doi.org/10.33096/jcpe.v9i2.878Keywords:
Palm Oil, Catalytic Cracking, BiofuelAbstract
Petroleum is one of the energy sources that currently has very wide uses. In addition to the fact that petroleum is a non-renewable resource, the use of fuel oil has also affected emission levels. Biofuel is an alternative fuel in solid, liquid or gas form that can be obtained from animals, plants, or agricultural waste. The process of making biofuel can be done by several methods, namely by thermal cracking, hydrocracking, and catalytic cracking. Thermal cracking is a simple process where heat is used to cut long hydrocarbon chains. Catalytic cracking is the process of breaking hydrocarbon chains using a catalyst. This study aims to determine the effect of Mg(OH)2/γ-Al2O3 catalyst (2 and 6)% and to determine the effect of the ratio of Mg(OH)2/γ-Al2O3 catalyst (1, 2, 3 and 4)% on the yield and selectivity of biofuel products from catalytic cracking of palm oil. The process of making biofuel through catalytic cracking process using Mg(OH)2/ γ –Al2O3 catalyst as much as 1% of the volume of material with a temperature of 370℃ on a hotplate magnetic stirrer and reactor for ±3 hours. The biofuel results were analyzed by Gas Chromatography Mass Spectrophotometry (GCMS). The highest biogasoline was obtained using Mg(OH)2/γ-Al2O3 catalyst 2% with a ratio of 2% which was 16.6%. While the highest biodiesel was obtained using Mg(OH)2/γ-Al2O3 catalyst 6% with a ratio of 2% which was 42.7%.
References
M. Wafi and A. Budianto, “Review Jurnal : Produksi Biofuel dari Palm Oil dengan Berbagai Metode Proses,” INSOLOGI: Jurnal Sains dan Teknologi, vol. 1, no. 4, pp. 368–375, 2022,.
J. P. Rodrigues, M. J. Jacinto, H. L. Oliveira, Y. H. O. Falcão, P. A. Z. Suarez, and L. M. Rossi, “Comparing thermal-cracking and catalytic hydrocracking in the presence of Rh and Ru catalysts to produce liquid hydrocarbons from vegetable oils,” J Braz Chem Soc, vol. 25, no. 12, pp. 2364–2369, Dec. 2014.
R. H. Alim, “Catalytic Cracking Minyak Nyamplung (Calophyllum Inophyllum L.) Menjadi Biofuel Menggunakan Katalis Nicr/Zeolit Hierarki,” Vol. 14, No. 1, Pp. 1–13, 2021.
I. Aziz, Y. Kurnianti, N. Saridewi, L. Adhani, and W. Permata, “Jurnal Kimia Sains dan Aplikasi Journal of Scientific and Applied Chemistry Utilization of Coconut Shell as Cr 203 Catalyst Support for Catalytic Cracking of Jatropha Oil into Biofuel,” Jurnal Kimia Sains dan Aplikasi, vol. 23, no. 2, pp. 39–45, 2020.
V. J. Wargadalam, Aminuddin, M. H. G. Syafei, and J. Enrico, “Kinetic Study Of Palm Oil Catalytic Cracking Over A Zeolite-based Catalyst,” Jurnal Penelitian Hasil Hutan, vol. 41, no. 2, Jul. 2023,.
A. T. Dewanti, M. Fitrah, B. Setiawan, A. Suryanto, and R. Rasyid, “Uji Aktifitas Katalis NaOH/Ni/gamma Al2O3 pada Proses Transesterifikasi Minyak Kelapa Sawit,” Journal of Chemical Process Engineering, vol. 6, no. 1, pp. 53–58, 2021.
R. Tambun, R. P. Saptawaldi, M. A. Nasution, and O. N. Gusti, “Pembuatan Biofuel dari Palm Stearin dengan Proses Perengkahan Katalitik Menggunakan Katalis ZSM-5,” Jurnal Rekayasa Kimia & Lingkungan, vol. 11, no. 1, pp. 46–52, Jun. 2016.
V. Nindita, “Studi Berbagai Metode Pembuatan Bbm Dari Sampah Plastik ....(Velma Nindita) Studi Berbagai Metode Pembuatan Bbm Dari Sampah Plastik Jenis Ldpe Dan Pvc Dengan Metode Thermal & Catalytic Cracking (Ni-Cr/Zeolit).”
S. Ramkumar and V. Kirubakaran, “Biodiesel from vegetable oil as alternate fuel for C.I engine and feasibility study of thermal cracking: A critical review,” Jun. 15, 2016, Elsevier Ltd.
A. Zikri, I. Febriana, J. M. Amin, A. Pratiwi, M. Pratiwi, and M. Hifal Reyhan, “Pengaruh Jumlah Katalis Dan Temperatur Pada Proses Pembuatan Bahan Bakar Cair Limbah Styrofoam Dengan Metode Catalytic Cracking Effect Of The Amount Of Catalyst And Temperature On The Process Of Making Liquid Fuel From Styrofoam Waste Using Catalytic Cracking Method,” Jurnal Kinetika, Vol. 11, No. 01, Pp. 9–17, 2020.
L. Adhani, R. Masrida, N. P. Angela, and R. R. Nugroho, “Analisis Efektivitas Katalis Fe/Zeolit pada Cracking Minyak Jelantah dalam Pembuatan Biofuel,” PENDIPA Journal of Science Education, vol. 4, no. 1, pp. 7–11, Feb. 2020.
A. Budianto, A. R. Sari, Y. W. Monica, E. Ningsih, and E. Kusdarini, “Proses Pembuatan Biofuel dengan Metode perengakahan Menggunakan Katalis Padat,” Journal of Industrial Process and Chemical Engineering (JOICHE), vol. 1, no. 1, p. 25, 2021.
A. T. Dewanti, R. Rasyid, and R. Kalla, “Effect of HCl/γ-Al2O3 and HCl/Ni/γ-Al2O3 Catalyst on The Cracking of Palm Oil,” Jurnal Kimia Valensi, vol. 8, no. 2, pp. 190–198, Nov. 2022.
I. Istadi, T. Riyanto, L. Buchori, D. D. Anggoro, A. W. S. Pakpahan, and A. J. Pakpahan, “Biofuels production from catalytic cracking of palm oil using modified hy zeolite catalysts over a continuous fixed bed catalytic reactor,” International Journal of Renewable Energy Development, vol. 10, no. 1, pp. 149–156, Feb. 2021.
I. Zahrina, “Pembuatan Biodiesel Dari Minyak Goreng Bekas Dengan Proses Catalytic Cracking.”
D. Anggraini, “Pembuatan Biofuel dari Minyak Goreng Bekas Melalui Proses Catalytic Cracking dengan Menggunakan Katalis H-USY.”
Z. D. Yigezu and K. Muthukumar, “Catalytic cracking of vegetable oil with metal oxides for biofuel production,” Energy Convers Manag, vol. 84, pp. 326–333, 2014.
A. A. Bunaciu, E. gabriela Udriştioiu, and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Oct. 02, 2015, Taylor and Francis Ltd.
W. Novia, I. Jafar, R. Malik, A. Avram, and R. Rasyid, “The effect of catalyst concentration and reaction stime on biodiesel production from palm oil using a catalyst Mg(OH)2/γ-Al2O3,” AIP Conf Proc, vol. 2595, no. December 2017, 2023.
Moh. F. H. A. Muthia Egi Rahmasita, “Analisa Morfologi Serat Tandan Kosong Kelapa”.
A. Suryanto and Wahyuni, “Proses Produksi Katalis CaO/γ -Al2O3 Dengan Metode Impregnasi Dalam Pembuatan Biodiesel Dari Minyak Kelapa,” Jurnal Industri Hasil Perkebunan, vol. 16 No. 2, pp. 1–8, 2021.
Y. Ai, W. Li, and D. Zhao, “2D mesoporous materials,” Natl Sci Rev, vol. 9, no. 5, pp. 2021–2022, 2022.
S. Zulichatun, A. Wijayanti, N. Hidayah, A. Marfina, A. Pranata, and L. Nurbaeti, “Analisis Luas Permukaan Zeolit Alam Termodifikasi Dengan Metode BET Menggunakan Surface Area Analyzer (SAA).”
K. Y. Paranjpe, “Alpha, Beta and Gamma alumina as catalyst,” The Pharma Innovation Journal , vol. 6, no. 11, pp. 236–238, 2017.
S. P. Ayu Slamet, I. Lathifah, M. Darmadinata, R. Indah Larasati, D. Purnama Sari, and Y. Gumara Yudhistira, “Analisis Luas Permukaan Alumina Menggunakan Surface Area Analyzer (SAA) Metode BET,” Jurusan Kimia Universitas Negeri Semarang, 2020.
X. Song, S. Sun, D. Zhang, J. Wang, and J. Yu, “Synthesis and characterization of magnesium hydroxide by batch reaction crystallization,” Front Chem Sci Eng, vol. 5, no. 4, pp. 416–421, 2011.
Zurohaina et al., “Pengaruh Jumlah Katalis Dan Temperatur Pada Proses Pembuatan Bahan Bakar Cair Limbah Styrofoam Dengan Metode Catalytic Cracking,” Jurnal Kinetika, vol. 11, no. 01, pp. 9–17, 2020.
S. Salamah and M. Maryudi, “Proses Pirolisis Limbah Styrofoam Menggunakan Katalis Silika-Alumina,” Jurnal Rekayasa Kimia & Lingkungan, vol. 13, no. 1, pp. 1–7, Mar. 2018.
Y. S. Rahayu, Y. Astuti, and E. F. Prasetya, “Identifikasi Ekstasi/MDMA Menggunakan Analisis Tes Warna dan Gas Chromatography-Mass Spectrometry (GCMS),” Jurnal Sains dan Edukasi Sains, vol. 3, no. 2, pp. 38–45, Oct. 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Chemical Process Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.