Preparasi Katalis Nanomaterial Dari Cangkang Kerang Darah (Anadara Granosa Linn) Untuk Pembuatan Biodiesel Dari Minyak Jelantah Dengan Menggunakan Microwave
DOI:
https://doi.org/10.33536/jcpe.v7i1.799Keywords:
Katalis Nanomaterial, Biodiesel, Anadara Granosa L, TransesterifikasiAbstract
Manfaat limbah cangkang kerang darah diantaranya yaitu dapat digunakan sebagai katalis untuk produksi biodiesel. Penelitian ini bertujuan untuk mengetahui sifat katalis dari cangkang kerang darah. Metode yang digunakan adalah metode esterifikasi dan transesterifikasi dengan menggunakan microwave dengan bahan baku jelantah. Hasil penelitian ini menunjukkan bahwa: (1) Berdasarkan hasil analisa XRD menunjukkan puncak utama fase sudut 2θ pada 34.10o yang menunjukkan bahwa senyawa yang diperoleh adalah kalsium Hidroksida (Ca(OH)2), selain itu juga terdapat puncak difraksi sudut 2θ pada 64.20o yang menunjukkan bahwa juga terdapat senyawa kalsium oksida (CaO). Hasil SEM menunjukkan bahwa cangkang kerang darah hasil kalsinasi mempunyai bentuk yang tidak seragam dan juga teragregasi sebagian dengan berdasarkan persamaan Sherrer diperoleh ukuran rata-rata kristal yaitu 23.77 nm. Biodiesel yang dihasilkan dengan menggunakan katalis cangkang kerang darah memiliki densitas 0,89 g/ml, Viskositas 4.05 mm2/s, Angka Asam 0.21 Mg KOH/g dan Gliserol Total sebesar 0.27 % massa dengan waktu optimum untuk produksi biodiesel yaitu pada menit ke 15 dengan konsentrasi 3 %wt/wt dengan perbandingan rasio mol minyak dan metanol yaitu 1: 12.
Downloads
References
Tim Sekretaris Jenderal Dewan Energi Nasional, “Indonesia Energy Out Look 2019,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.
A.G.Olabi and Mohammad Ali Abdelkareem, “Renewable Energy and Climate Change,” Renew. Sustain. Energy Rev., vol. 158, pp. 111–112, 2022.
Traction Energy Asia, Pemanfaatan dan Pengelolaan Biofuel (Biodiesel): Pembelajaran dan Praktik Baik dari Berbagai Negara, 2nd ed. Jakarta: Traction Energy Asia, 2020.
A. Alagumalai, O. Mahian, F. Hollmann, and W. Zhang, “Environmentally benign solid catalysts for sustainable biodiesel production: A critical review,” Sci. Total Environ., vol. 768, p. 144856, 2021, doi: 10.1016/j.scitotenv.2020.144856.
M. Ramos, A. P. S. Dias, J. F. Puna, J. Gomes, and J. C. Bordado, “Biodiesel production processes and sustainable raw materials,” Energies, vol. 12, no. 23, 2019, doi: 10.3390/en12234408.
Direktorat Jenderal Perikanan Tangkap, Statistik Perikanan Tangkap Indonesia 2010. Jakarta: Direktorat Jenderal Perikanan Tangkap, 2011.
S. Dampang, E. Purwanti, F. Destyorini, S. B. Kurniawan, S. R. S. Abdullah, and M. F. Imron, “Analysis of Optimum Temperature and Calcination Time in the Production of CaO Using Seashells Waste as CaCO3 Source,” J. Ecol. Eng., vol. 22, no. 5, pp. 221–228, 2021, doi: 10.12911/22998993/135316.
S. F. S. Mohamad, S. Mohamad, and Z. Jemaat, “Study of Calcinations Condition on Decomposition of Calcium Carbonate in Waste Cockle Shell to Calcium Oxide Using Thermal Gravimetric Analysis,” ARPN J. Eng. Appl. Sci., vol. 11, no. 16, pp. 9917–9921, 2016.
T. I. Ramdhani, “Sintesis dan Karakterisasi Katalia CaO/Zeolit Nano Partikel Untuk Transesterifikasi Minyak Kelapa Sawit,” Semarang, 2017.
A. Suryanto, S. Suprapto, and M. Mahfud, “Production Biodiesel from Coconut Oil Using Microwave: Effect of Some Parameters on Transesterification Reaction by NaOH Catalyst,” Bull. Chem. React. Eng. Catal., vol. 10, no. 2, pp. 162–168, 2015.
A. Lesbani, S. O. Ceria Sitompul, R. Mohadi, and N. Hidayati, “Characterization and Utilization of Calcium Oxide (CaO) Thermally Decomposed from Fish Bones as a Catalyst in the Production of Biodiesel from Waste Cooking Oil,” Makara J. Technol., vol. 20, no. 3, p. 121, 2016, doi: 10.7454/mst.v20i3.3066.
D. Supangat and S. E. Cahyaningrum, “Synthesis and Characterization of Hydroxyapatite of Crabs Shell (scylla serrata) by Wet Application Method,” UNESA J. Chem., vol. 6, no. 3, pp. 143–149, 2017.
Marwan and E. Indarti, “Hydrated Calcined Cyrtopleura Costata Seashells as an Effective Solid Catalyst for Microwave-Assisted Preparation of Palm Oil Biodiesel,” Energy Convers. Manag., vol. 117, pp. 319–325, 2016, doi: 10.1016/j.enconman.2016.03.030.
X. Lu et al., “Effects of Grain Size and Temperature on Mechanical Properties of Nano-Polycrystalline Nickel-Cobalt Alloy,” Integr. Med. Res., vol. 9, no. 6, pp. 13161–13173, 2020, doi: 10.1016/j.jmrt.2020.09.060.
S. F. S. Mohamad, S. Mohamad, and Z. Jemaat, “Study of calcinations condition on decomposition of calcium carbonate in waste cockle shell to calcium oxide using thermal gravimetric analysis,” ARPN J. Eng. Appl. Sci., vol. 11, no. 16, pp. 9917–9921, 2016.
A. Krause, “No Title,” Technischen Universität Dresden, 2014.
M. Harabi, S. N. Bouguerra, F. Marrakchi, and L. P. Chrysikou, “Biodiesel and Crude Glycerol from Waste Frying Oil : Production , Characterization and Evaluation of Biodiesel Oxidative Stability with Diesel Blends,” Sustainability, vol. 11, p. 1937, 2019, doi: 10.3390/su11071937.
D. Priyanto, “Pemanasan Bahan Bakar Biodiesel Palm Oil ( B100 ) Terhadap Unjuk Kerja Mesin Diesel Sistem Injeksi Langsung Diamond Tipe Di800,” Institut Teknologi Sepuluh Nopember, 2017.
D. Irawan, Z. Arifin, C. Olivia, and M. Nopal, “Pengaruh Rasio Metanol dan KOH Pada Proses Pembuatan Biodiesel Dengan Metode Elektrolisis Menggunakan Elektroda Perak,” in Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 2019, 2019, pp. 268–272.
S. Efendi, F. H. Hamzah, and A. Ali, “Konsentrasi Katalis CaO dari Cangkang Telur Ayam pada Proses Transesterifikasi Biodiesel Minyak Biji Pangi,” Jom FAPERTA, vol. 5, no. 1, pp. 1–12, 2018.
M. Faizal, U. Maftuchah, and W. A. Auriyani, “Pengaruh Kadar Metanol, Jumlah Katalis dan Waktu Reaksi pada Pembuatan Biodiesel dari Lemak Sapi melalui Proses Transesterifikasi,” J. Tek. Kim., vol. 4, no. 19, pp. 29–37, 2013.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Chemical Process Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.