Process Simulation and Sensitvity Analysis of Cumene Production from an Integrated Alkylation and Transalkylation Reaction
DOI:
https://doi.org/10.33536/jcpe.v7i2.787Keywords:
Cumene, Simulation, Sensitivity Analysis, Alkylation;, TransalkylationAbstract
Cumene is a very important petrochemical commodity, mainly to produce phenol and acetone. The overall growth rate for cumene capacity has been healthy, averaging slightly less than 3.5 % per year to reach 18 million metric tons per year in 2017. The purpose of this study is to generate a steady-state process simulation using ASPEN HYSYS version 10 to produce a small capacity of 10 ton/h of cumene with 99.99 wt % product purity. An alkylation reaction of benzene with propylene is carried out for producing cumene by using a zeolites catalyst as modeled by Badger technology. Transalkylation is also integrated into the system for eliminating unwanted products such as p-diisopropyl benzene. The proposed simulation flowsheet provides a good convergence overall result. The preliminary utility consumption obtained from the simulation consists of approximately 0.0418 kton/h of steam, 1.22 kton/h of cooling water, and 450 kW of electrical duty. Optimization is carried out in the simulation by conducting a sensitivity analysis study to find the optimum operating conditions of the alkylation reactor with a dimension of 1.3 m diameter and 4 m of length. The result shows that at an optimum value of B/P molar ratio of 7, reactant temperature of 170 oC, and reactant pressure of 3 MPa, the selectivity of cumene obtained is at a high value of 0.9446, while the percentage conversion of propylene to cumene obtained is at a high value of 99.99 %.
Downloads
References
R. J. Schmidt, ―Industrial catalytic processes—phenol production,‖ Appl Catal A Gen, vol. 280, no. 1, pp. 89–103, 2005, doi: /10.1016/j.apcata.2004.08.030.
K. V. Yogesh, V. R. Chumbhale, and A. S. Aswar, ―ALKYLATION OF BENZENE TO CUMENE OVER MOR ZEOLITE CATALYSTS,‖ Rev. Roum. Chim, vol. 57, no. 2, pp. 107–113, 2012.
R. Thakur, S. Barman, and R. K. Gupta, ―Synthesis of cumene by transalkylation over modified beta zeolite: a kinetic study,‖ Brazilian Journal of Chemical Engineering, vol. 33, pp. 957–967, 2016, doi: 10.1590/0104-6632.20160334s20150333
R. A. Meyers, Handbook of petrochemicals production processes. McGraw-Hill Education, 2019.
P. Wexler et al., Encyclopedia of toxicology, vol. 1. Academic Press, 2005.
F. Mahmoudian, A. H. Moghaddam, and S. M. Davachi, ―Genetic‐based multi‐objective optimization of alkylation process by a hybrid model of statistical and artificial intelligence approaches,‖ Can J Chem Eng, 2021, doi: 10.1002/cjce.24072
W. L. Luyben, ―Design and control of the cumene process,‖ Ind Eng Chem Res, vol. 49, no. 2, pp. 719–734, 2010, doi: 10.1021/ie9011535
M. Cowley, A. de Klerk, R. J. J. Nel, and J. D. Rademan, ―Alkylation of benzene with 1-pentene over solid phosphoric acid,‖ Ind Eng Chem Res, vol. 45, no. 22, pp. 7399–7408, 2006, doi: 10.1021/ie060197p
A. C. Dimian and C. S. Bildea, Chemical process design: Computer-aided case studies. John Wiley & Sons, 2008.
A. S. Pathak, S. Agarwal, V. Gera, and N. Kaistha, ―Design and control of a vapor-phase conventional process and reactive distillation process for cumene production,‖ Ind Eng Chem Res, vol. 50, no. 6, pp. 3312–3326, 2011, doi: 10.1021/ie100779k
M. Torres-Rodríguez, M. Gutiérrez-Arzaluz, V. Mugica-Álvarez, J. Aguilar-Pliego, and S. Pergher, ―Alkylation of benzene with propylene in a flow-through membrane reactor and fixed-bed reactor: preliminary results,‖ Materials, vol. 5, no. 5, pp. 872–881, 2012, doi: 10.3390/ma5050872
H. R. Norouzi, M. A. Hasani, B. Haddadi-Sisakht, and N. Mostoufi, ―Economic design and optimization of zeolite-based cumene production plant,‖ Chem Eng Commun, vol. 201, no. 10, pp. 1270–1293, 2014, doi: 10.1080/00986445.2013.806312
P. G. Junqueira, P. v Mangili, R. O. Santos, L. S. Santos, and D. M. Prata, ―Economic and environmental analysis of the cumene production process using computational simulation,‖ Chemical Engineering and Processing-Process Intensification, vol. 130, pp. 309–325, 2018, doi: 10.1016/j.cep.2018.06.010
A. Chudinova, A. Salischeva, E. Ivashkina, O. Moizes, and A. Gavrikov, ―Application of cumene technology mathematical model,‖ Procedia Chem, vol. 15, pp. 326–334, 2015, doi: 10.1016/j.proche.2015.10.052
J. A. Weinfeld, S. A. Owens, and R. B. Eldridge, ―Reactive dividing wall columns: A comprehensive review,‖ Chemical Engineering and Processing-Process Intensification, vol. 123, pp. 20–33, 2018, doi: 10.1016/j.cep.2017.10.019
J.-B. Baek and G. Lee, ―Comparison of sampling and estimation methods for economic optimization of cumene production process,‖ Korean Chemical Engineering Research, vol. 52, no. 5, pp. 564–573, 2014, doi: 10.9713/kcer.2014.52.5.564
F. Flegiel, S. Sharma, and G. P. Rangaiah, ―Development and multiobjective optimization of improved cumene production processes,‖ Materials and Manufacturing Processes, vol. 30, no. 4, pp. 444–457, 2015, doi: 10.1080/10426914.2014.967355.
J. Zhai, Y. Liu, L. Li, Y. Zhu, W. Zhong, and L. Sun, ―Applications of dividing wall column technology to industrial-scale cumene production,‖ Chemical Engineering Research and Design, vol. 102, pp. 138–149, 2015, doi: 10.1016/j.cherd.2015.06.020
N. Asprion et al., ―Simulation and Multi‐criteria Optimization under Uncertain Model Parameters of a Cumene Process,‖ Chemie Ingenieur Technik, vol. 89, no. 5, pp. 665–674, 2017, doi: 10.1002/cite.201600098
N. A. Diangelakis, B. Burnak, J. Katz, and E. N. Pistikopoulos, ―Process design and control optimization: A simultaneous approach by multi‐parametric programming,‖ AIChE Journal, vol. 63, no. 11, pp. 4827–4846, 2017, doi: 10.1002/aic.15825
M. Carlos, B. Fatine, O.-M. Nelly, and G. Nadine, ―Deviation propagation analysis along a cumene process by using dynamic simulations,‖ Comput Chem Eng, vol. 117, pp. 331–350, 2018, doi: https://doi.org/10.1016/j.compchemeng.2018.06.010
K. E. Kharlampidi et al., ―Design of cumene oxidation process,‖ Chemical Engineering and Processing-Process Intensification, vol. 161, p. 108314, 2021, doi: 10.1016/j.cep.2021.108314
R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes. Pearson Education, 2008.
P. G. J. Lopes, P. V. Mangili, R. O. dos Santos, and D. M. Prata, ―Economic And Environmental Analysis Of The Cumene Process Intensification With The Aid Of Computational Simulation‖, 2017.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Chemical Process Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.