Efek Rasio Umpan Co-Gasifikasi Batu Bara dan Tandan Kosong Kelapa Sawit terhadap Produksi Metanol : Studi Simulasi

Authors

  • Rahma Muthia Universitas Indonesia

DOI:

https://doi.org/10.33536/jcpe.v8i1.757

Keywords:

Co-gasifikasi, batu bara, tandan kosong kelapa sawit, metanol, process mass intensity

Abstract

Metanol memiliki banyak kegunaan di berbagai bidang, baik sebagai senyawa kimia antara untuk diproses lebih lanjut, sebagai penyusun sebuah senyawa kimia akhir, maupun sebagai bahan bakar. Fleksibilitas penggunaan metanol menjadikan peranannya strategis dalam pengembangan bahan kimia dan energi masa depan. Penelitian ini mengkaji efek rasio umpan batu bara dan tandan kosong kelapa sawit pada proses co-gasifikasi untuk menghasilkan metanol, dengan melakukan studi simulasi di piranti lunak Aspen Plus v.11. Variasi rasio tersebut adalah 100-0, 85-15, 70-30, 50-50, 30-70, 15-85, dan 0-100, di mana rasio 100-0 menunjukkan proses gasifikasi batu bara murni. Performa proses diukur dengan menggunakan parameter process mass intensity (PMI), yaitu parameter yang lazim diterapkan di dunia industri untuk mengevaluasi aspek berkelanjutan sebuah proses. Hasil penelitian ini menunjukkan bahwa berkurangnya komposisi batu bara pada umpan co-gasifikasi menyebabkan terjadinya penurunan kandungan CO pada syngas. Hal ini menyebabkan penurunan produktivitas proses sintesis metanol, yang diindikasikan dengan meningkatnya nilai PMI. Selain itu, penelitian ini juga menghasilkan luaran berupa tren PMI terhadap komposisi batu bara di dalam umpan. Tren tersebut memberikan sebuah persamaan polinomial beroder dua (y = 0,0002x2 – 0,0481x + 5,3381) yang berguna bagi para perancang pabrik untuk memprediksi secara cepat mengenai jumlah metanol yang dapat dihasilkan apabila rasio umpan co-gasifikasi divariasikan.

Downloads

Download data is not yet available.

References

G. Z. S. Ling, J. J. Foo, X.-Q. Tan, and W.-J. Ong, “Transition into Net-Zero Carbon Community from Fossil Fuels: Life Cycle Assessment of Light-Driven CO2 Conversion to Methanol Using Graphitic Carbon Nitride,” ACS Sustainable Chem. Eng., vol. 11 (14), pp. 5547–5558, 2023, doi: 10.1021/acssuschemeng.2c07375.

J. Sehested, “Industrial and scientific directions of methanol catalyst development,” J. Catal, vol. 371, pp. 368–375, 2019, doi: 10.1016/j.jcat.2019.02.002.

M. Bukhtiyarova, T. Lunkenbein, K. Kähler, and R. Schlögl, “Methanol Synthesis from Industrial CO2 Sources: A Contribution to Chemical Energy Conversion,” Catal. Lett., vol. 147, pp. 416–427, 2017, doi: 10.1007/s10562-016-1960-x.

J. Mahabir, K. Bhagaloo, N. Koylass, M. N. Boodoo, R. Ali, M. Guo, and K. Ward, “What is required for resource-circular CO2 utilization within Mega-Methanol (MM) production?” J. CO2 Util., vol. 45, 101451, 2021, doi: 10.1016/j.jcou.2021.101451.

C. Jaggai, Z. Imkaraaz, K. Samm, A. Pounder, N. Koylass, D. P. Chakrabarti, M. Guo, K. Ward, “Towards greater sustainable development within current Mega-Methanol (MM) production,” Green Chem., vol. 22 (13), pp. 4279–4294, 2020, doi: 10.1039/d0gc01185a.

G. Iaquaniello, G. Centi, A. Salladini, and E. Palo, “Methanol Economy: Environment, Demand, and Marketing With a Focus on the Waste-to-Methanol Process,” in Methanol, A. Basile, F. Dalena, Eds., Elsevier, 2018, pp. 595–612, doi: 10.1016/B978-0-444-63903-5.00022-4.

P. Gautam, Neha, S. N. Upadhyay, and S. K. Dubey, “Bio-methanol as a renewable fuel from waste biomass: Current trends and future perspective,” Fuel, vol. 273, 117783, 2020, doi: 10.1016/j.fuel.2020.117783.

N. S. Shamsul, S. K. Kamarudin, N. A. Rahman, N. T. Kofli, “An overview on the production of bio-methanol as potential renewable energy,” Renewable Sustainable Energy Rev., vol. 33, pp. 578–588, 2014, doi: 10.1016/j.rser.2014.02.024.

M. Shahabuddin and S. Bhattacharya, “Enhancement of performance and emission characteristics by co-gasification of biomass and coal using an entrained flow gasifier,” J. Energy Inst., vol. 95, pp. 166–178, 2021, doi: 10.1016/j.joei.2021.01.012.

S. Li, X. Sun, L. Liu, and J. Du, “A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal,” Energy, vol. 267, 126566, 2023, doi: 10.1016/j.energy.2022.126566.

A. Hasanoğlu, E. Faki, A. Seçer, Ş. Üzden, “Co-solvent effects on hydrothermal co-gasification of coal/biomass mixtures for hydrogen production,” Fuel, vol. 331 (1), 125693, 2023, doi: 10.1016/j.fuel.2022.125693.

Z. Liu, “Economic analysis of methanol production from coal/biomass upgrading,” Energy Sources Part B, vol. 13 (1), pp. 66–71, 2018, doi: 10.1080/15567249.2017.1403501.

Z. Qin, Y. Tang, Z. Zhang, and X. Ma, “Techno-economic-environmental analysis of coal-based methanol and power poly-generation system integrated with biomass co-gasification and solar based hydrogen addition,” Energy Convers. Manage., vol. 228, 113646, 2021, doi: 10.1016/j.enconman.2020.113646.

S. Li, X. Sun, L. Liu, and J. Du, “A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal.” Energy, vol. 267, 126566, 2023, doi: 10.1016/j.energy.2022.126566.

L. Emami-Taba, M. F. Irfan, W. M. A. W. Daud, and M. H. Chakrabarti, “Fuel blending effects on the co-gasification coal and biomass,” Biomass Bioenergy, vol. 57, pp. 249–263, 2013, doi: 10.1016/j.biombioe.2013.02.043.

A. Ramos, E. Monteiro, A. Rouboa, “Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods – A review,” Energy Convers. Manage., vol. 270, 116271, 2022, doi: 10.1016/j.enconman.2022.116271.

W. W. Purwanto, D. Supramono, and H. Fisafarani, "Biomass Waste and Biomass Pellets Characteristics and Their Potential in Indonesia," The 1st International Seminar on Fundamental and Application of Chemical Engineering, 2010.

L. Yi, J. Feng, Y.-H. Qin, and W.-Y. Li, "Prediction of elemental composition of coal using proximate analysis," Fuel, vol. 193, pp. 315-321, 2017, doi: 10.1016/j.fuel.2016.12.044.

C. H. Benison, P. R. Payne, “Manufacturing mass intensity: 15 Years of Process Mass Intensity and development of the metric plant cleaning and beyond,” Curr. Res. Green Sustainable Chem., vol. 5, 100229, 2022, doi: 10.1016/j.crgsc.2021.100229.

M. Puig-Gamero, J. Argudo-Santamaria, J. L. Valverde, P. Sánchez, and L. Sanchez-Silva, “Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis,” Energy Convers. Manage. vol. 177, pp. 416–427, 2018, doi: 10.1016/j.enconman.2018.09.088.

A. AlNouss, G. McKay, T. Al-Ansari, “A comparison of steam and oxygen fed biomass gasification through a techno-economic-environmental study.” Energy Convers. Manage., vol. 208, 112612, 2020, doi: 10.1016/j.enconman.2020.112612.

F. J. Gutiérrez Ortiz, A. Serrera, S. Galera, P. Ollero, "Methanol synthesis from syngas obtained by supercritical water reforming of glycerol," Fuel, vol. 105, pp. 739-751, 2013, doi: 10.1016/j.fuel.2012.09.073.

J. Nyári, M. Magdeldin, M. Larmi, M. Järvinen, A. Santasalo-Aarnio, "Techno-economic barriers of an industrial-scale methanol CCU-plant," J. CO2 Util., vol. 39, 101166, 2020, doi: 10.1016/j.jcou.2020.101166.

A. A. Kiss, J. J. Pragt, H. J. Vos, G. Bargeman, G., M. T. de Groot, "Novel efficient process for methanol synthesis by CO2 hydrogenation," Chem. Eng. J., vol. 284, pp. 260-269, 2016, doi: 10.1016/j.cej.2015.08.101

F. Manenti, A. R. Leon-Garzon, Z. Ravaghi-Ardebili, C. Pirola, "Systematic staging design applied to the fixed-bed reactor series for methanol and one-step methanol/dimethyl ether synthesis," Appl. Therm. Eng., vol. 70(2), 1228-1237, 2014, doi: 10.1016/j.applthermaleng.2014.04.011

Downloads

Published

31-05-2023

How to Cite

Efek Rasio Umpan Co-Gasifikasi Batu Bara dan Tandan Kosong Kelapa Sawit terhadap Produksi Metanol : Studi Simulasi. (2023). Journal of Chemical Process Engineering, 8(1), 24-30. https://doi.org/10.33536/jcpe.v8i1.757