Ekstraksi Minyak Nabati dari Biji Kemiri (Aleurites Moluccana L. Willd.) dengan Metode Microwave Hydrodiffusion and Gravity (MHG)
DOI:
https://doi.org/10.33536/jcpe.v8i1.755Keywords:
Microwave Hydrodiffusion and Gravity, Aleurites moluccana L;, Minyak kemiri, EkstraksiAbstract
Studi ini mempelajari penerapan metode microwave hydro dffusion gravity (MHG) yang relatif baru untuk ekstraksi minyak dari biji kemiri (Aleurites Moluccana L.). Proses ekstraksi dengan MHG ini tidak menggunakan pelarut, sehingga minyak yang diperoleh aman untuk dikonsumsi. Penelitian ini mengeksplorasi beberapa variabel seperti daya gelombang mikro (300-600 W), waktu ekstraksi (0-75 menit), ukuran bahan (1-3 cm), dengan kondisi operasi pada tekanan atmosfir untuk mengoptimalkan proses ekstraksi. Tiga jenis pra-perlakuan yang digunakan yaitu bahan disangrai, bahan yang dioven, dan bahan yang tidak diberi perlakuan. Hasil penelitian menunjukkan bahwa bahan biji yang disangrai menghasilkan rendemen minyak tertinggi (5,55% b/b) dengan parameter ukuran 1 cm, daya gelombang 600 W, dan waktu ekstraksi 30 menit. Analisis GC-MS dari ekstrak minyak mengidentifikasi pirazine sebagai senyawa terbesar (36,814%). Selanjutnya, pemodelan matematis melibatkan tiga model yakni model orde pertama, model orde kedua, dan model Weibull. Hasil pemodelan menunjukkan bahwa model kinetika empiris berbasis Weibull merepresentasikan data eksperimen terbaik dengan nilai R2 sebesar 0,999378 dan RSMD terkecil sebesar 0,022052. Penelitian ini melaporkan bahwa metode MHG merupakan teknik yang efektif untuk menghasilkan minyak kemiri berkualitas tinggi. Temuan penelitian ini memberikan wawasan strategis dalam mengoptimalkan proses ekstraksi untuk produksi minyak kemiri yang memiliki aplikasi potensial dalam industri makanan dan kosmetik.
Downloads
References
N. L. M. Quintão et al., “Contribution of α , β -Amyrenone to the Anti-Inflammatory and Antihypersensitivity Effects of Aleurites moluccana (L.) Willd.,” Biomed Res. Int., vol. 2014, pp. 1–11, 2014, doi: 10.1155/2014/636839.
S. Sulhatun, M. Mutiawati, and E. Kurniawan, “Pengaruh Temperatur dan Waktu Pemasakan Terhadap Perolehan Minyak Kemiri dengan Menggunakan Cara Basah,” J. Teknol. Kim. Unimal, vol. 9, no. 2, pp. 54–60, 2020, doi: 10.29103/jtku.v9i2.4400.
R. Adawiyah, “Uji Identifikasi Farmakognostik Tumbuhan Kemiri Sunan (Aleurites Trisperma) Di Kebun Percobaan Universitas Muhammadiyah Palangkaraya,” Anterior J., vol. 17, no. 1, pp. 60–68, 2017, doi: 10.33084/anterior.v17i1.29.
M. Bilang, M. Mamang, S. Salengke, R. P. Putra, and R. Reta, “Elimination of toxalbumin in candlenut seed (Aleurites moluccana (L.) Willd) using wet heating at high temperature and identification of compounds in the candlenut glycoprotein,” Int. J. Agric. Syst., vol. 6, no. 2, p. 89, 2018, doi: 10.20956/ijas.v6i2.649.
F. Anaba, N. L. P. I. Mayasari, and A. Andriyanto, “Potensi Infusa Kemiri (Aleurites moluccana) sebagai Analgesik dan Stimulator Stamina,” Acta Vet. Indones., vol. 9, no. 1, pp. 14–20, 2021, doi: 10.29244/avi.9.1.14-20.
H. J. McArthur, “Public-Private Partnerships: A Promising Approach for International Agricultural Development or One’s Worst Nightmare?,” in Proceedings of the 18th International Symposium of the International Farming Systems Association: A Global Learning Opportunity, 2005.
Yusran, “Mengembalikan kejayaan hutan kemiri rakyat,” Mengembalikan Kejay. hutan kemiri rakyat, pp. 1–4, 2005, doi: 10.17528/cifor/001809.
R. Wikström, “A hard nut to crack - a gender analysis of a community and a value chain in Indonesia,” Swedish University of Agricultural Sciences, 2019.
M. Gavahian, A. Farahnaky, K. Javidnia, and M. Majzoobi, “Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L.,” Innov. Food Sci. Emerg. Technol., vol. 14, pp. 85–91, Apr. 2012, doi: 10.1016/j.ifset.2012.01.002.
R. Manouchehri, M. J. Saharkhiz, A. Karami, and M. Niakousari, “Extraction of essential oils from damask rose using green and conventional techniques: Microwave and ohmic assisted hydrodistillation versus hydrodistillation,” Sustain. Chem. Pharm., vol. 8, 2018, doi: 10.1016/j.scp.2018.03.002.
O. J. Catchpole, J. B. Grey, N. B. Perry, E. J. Burgess, W. A. Redmond, and N. G. Porter, “Extraction of Chili, Black Pepper, and Ginger with Near-Critical CO2, Propane, and Dimethyl Ether: Analysis of the Extracts by Quantitative Nuclear Magnetic Resonance,” J. Agric. Food Chem., vol. 51, no. 17, pp. 4853–4860, 2003, doi: 10.1021/jf0301246.
C. Wu, F. Wang, J. Liu, Y. Zou, and X. Chen, “A comparison of volatile fractions obtained from Lonicera macranthoides via different extraction processes : ultrasound , microwave , Soxhlet extraction , hydrodistillation , and cold maceration,” Integr. Med. Res., pp. 1–7, 2015, doi: 10.1016/j.imr.2015.06.001.
E. Subroto, E. Widjojokusumo, B. Veriansyah, and R. R. Tjandrawinata, “Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil,” J. Food Sci. Technol., vol. 54, no. 5, pp. 1286–1292, 2017, doi: 10.1007/s13197-017-2542-7.
S. Périno-issartier, C. Ginies, G. Cravotto, and F. Chemat, “A comparison of essential oils obtained from lavandin via different extraction processes : Ultrasound , microwave , turbohydrodistillation , steam and hydrodistillation,” J. Chromatogr. A, vol. 1305, pp. 41–47, 2013, doi: 10.1016/j.chroma.2013.07.024.
Z. Liu et al., “Cinnamomum camphora fruit peel as a source of essential oil extracted using the solvent-free microwave-assisted method compared with conventional hydrodistillation,” LWT, vol. 153, p. 112549, Jan. 2022, doi: 10.1016/j.lwt.2021.112549.
J. Martínez, J. Rosas, J. Pérez, Z. Saavedra, V. Carranza, and P. Alonso, “Green approach to the extraction of major capsaicinoids from habanero pepper using near-infrared, microwave, ultrasound and Soxhlet methods, a comparative study,” Nat. Prod. Res., vol. 33, no. 3, pp. 447–452, Feb. 2019, doi: 10.1080/14786419.2018.1455038.
M. A. Charitopoulou, L. Papadopoulou, and D. S. Achilias, “Microwave-assisted extraction as an effective method for the debromination of brominated flame retarded polymeric blends with a composition that simulates the plastic part of waste electric and electronic equipment (WEEE),” Sustain. Chem. Pharm., vol. 29, p. 100790, Oct. 2022, doi: 10.1016/j.scp.2022.100790.
Y. Variyana and M. Mahfud, “Kinetics Study Using Solvent-Free Microwave Extraction of Essential Oil from Allium sativum L.,” Key Eng. Mater., vol. 840, pp. 186–192, Apr. 2020, doi: 10.4028/www.scientific.net/KEM.840.186.
M. F. Nabila, A. B. Riyanta, and A. A. Barlian, “The Effect Of Variations In Roasting Temperature On Yield And Percentage Of Inhibition Of Dpph Radical Reduction In Candlenut Oil The UV-VIS Spectrophotometric Method,” J. Farm. Sains dan Prakt., vol. 7, no. 2, pp. 120–125, 2021, doi: 10.31603/pharmacy.v7i2.4131.
A. Arlene, I. Suharto, and N. R. Jessica, “Pengaruh Temperatur dan Ukuran Biji Terhadap Perolehan Minyak Kemiri pada Ekstraksi Biji Kemiri dengan Penekanan Mekanis,” Pros. Semin. Nas. Tek. Kim. “Kejuangan,” pp. 1–6, 2010.
M. A. Vian, X. Fernandez, F. Visinoni, and F. Chemat, “Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils,” J. Chromatogr. A, vol. 1190, no. 1–2, pp. 14–17, 2008, doi: 10.1016/j.chroma.2008.02.086.
H. Benmoussa, W. Elfalleh, S. He, M. Romdhane, A. Benhamou, and R. Chawech, “Microwave hydrodiffusion and gravity for rapid extraction of essential oil from Tunisian cumin (Cuminum cyminum L.) seeds: Optimization by response surface methodology,” Ind. Crops Prod., vol. 124, no. May, pp. 633–642, 2018, doi: 10.1016/j.indcrop.2018.08.036.
L. López-Hortas, E. Conde, E. Falqué, and H. Domínguez, “Flowers of Ulex europaeus L.-Comparing two extraction techniques (MHG and distillation),” Comptes Rendus Chim., vol. 19, no. 6, pp. 718–725, 2016, doi: 10.1016/j.crci.2015.11.027.
L. Pérez, E. Conde, and H. Domínguez, “Microwave hydrodiffusion and gravity processing of Sargassum muticum,” Process Biochem., vol. 49, no. 6, pp. 981–988, 2014, doi: 10.1016/j.procbio.2014.02.020.
K. I. B. Moro, A. B. B. Bender, L. P. da Silva, and N. G. Penna, “Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review,” Food Bioprocess Technol., vol. 14, no. 8, pp. 1407–1431, 2021, doi: 10.1007/s11947-021-02665-4.
Y. Variyana and M. Mahfud, “Optimization Using Solvent-Free Microwave Hydro-diffusion Gravity Extraction of Onion Oil from Allium cepa by Response Surface Methodology,” IPTEK J. Technol. Sci., vol. 30, no. 3, p. 116, 2019, doi: 10.12962/j20882033.v30i3.5474.
F. Chemat et al., “A review of sustainable and intensified techniques for extraction of food and natural products,” Green Chem., vol. 22, no. 8, pp. 2325–2353, 2020, doi: 10.1039/c9gc03878g.
Y. Variyana, M. Mahfud, Z. Ma’Sum, B. I. Ardianto, L. P. Syahbana, and D. S. Bhuana, “Optimization of microwave hydro-distillation of lemongrass leaves (Cymbopogon nardus) by response surface methodology,” IOP Conf. Ser. Mater. Sci. Eng., vol. 673, no. 1, 2019, doi: 10.1088/1757-899X/673/1/012006.
S. Périno, J. T. Pierson, K. Ruiz, G. Cravotto, and F. Chemat, “Laboratory to pilot scale: Microwave extraction for polyphenols lettuce,” Food Chem., vol. 204, no. June 2018, pp. 108–114, 2016, doi: 10.1016/j.foodchem.2016.02.088.
H. S. Kusuma and M. Mahfud, “Preliminary study: Kinetics of oil extraction from basil (Ocimum basilicum) by microwave-assisted hydrodistillation and solvent-free microwave extraction,” South African J. Chem. Eng., vol. 21, pp. 49–53, 2016, doi: 10.1016/j.sajce.2016.06.001.
M. S. Marković, S. Milojević, N. M. Bošković-Vragolović, V. P. Pavićević, L. Babincev, and V. B. Veljković, “A new kinetic model for the common juniper essenstial oil extraction by microwave hydrodistillation,” Chinese J. Chem. Eng., vol. 27, no. 3, 2019, doi: 10.1016/j.cjche.2018.06.022.
H. Haqqyana, V. F. W. Tania, A. M. Suyadi, H. S. Kusuma, A. Altway, and M. Mahfud, “Kinetic study in the extraction of essential oil from clove (Syzgium aromaticum) stem using microwave hydrodistillation,” Moroccan J. Chem., vol. 8, no. S1, pp. 64–71, 2020.
S. Lagergren, “About the theory of so-called adsorption of soluble substances,” K. Sven. Vetenskapsakademiens Handl., vol. 24, no. 4, pp. 1–39, 1898.
Y.-S. Ho, “Citation review ofLagergren kinetic rate equation on adsorption reactions,” Scientometrics, vol. 59, no. 1, pp. 171–177, 2004, doi: 10.1023/B:SCIE.0000013305.99473.cf.
H. Jahongir, Z. Miansong, I. Amankeldi, Z. Yu, and L. Changheng, “The influence of particle size on supercritical extraction of dog rose (Rosa canina) seed oil,” J. King Saud Univ. - Eng. Sci., vol. 31, no. 2, pp. 140–143, 2019, doi: 10.1016/j.jksues.2018.04.004.
K. Radha Krishnan, P. Azhagu Saravana Babu, S. Babuskin, M. Sivarajan, and M. Sukumar, “Modeling the Kinetics of Antioxidant Extraction from Origanum vulgare and Brassica nigra,” Chem. Eng. Commun., vol. 202, no. 12, pp. 1577–1585, Dec. 2015, doi: 10.1080/00986445.2014.957757.
F. Chen, Y. Zu, and L. Yang, “A novel approach for isolation of essential oil from fresh leaves of Magnolia sieboldii using microwave-assisted simultaneous distillation and extraction,” Sep. Purif. Technol., vol. 154, pp. 271–280, 2015, doi: 10.1016/j.seppur.2015.09.066.
K. B. Singh Chouhan, R. Tandey, K. K. Sen, R. Mehta, and V. Mandal, “Microwave hydrodiffusion and gravity model with a blend of high and low power microwave firing for improved yield of phenolics and flavonoids from oyster mushroom,” Sustain. Chem. Pharm., vol. 17, no. May, p. 100311, 2020, doi: 10.1016/j.scp.2020.100311.
O. R. Alara and N. H. Abdurahman, “Microwave-assisted extraction of phenolics from Hibiscus sabdariffa calyces: Kinetic modelling and process intensification,” Ind. Crops Prod., vol. 137, no. May, pp. 528–535, 2019, doi: 10.1016/j.indcrop.2019.05.053.
T. Phat, N. Quyen, T. Truc, and V. T. Lam, “Materials Today : Proceedings Assessing the kinetic model on extraction of essential oil and chemical composition from lemon peels ( Citrus aurantifolia ) by hydro-distillation process,” Mater. Today Proc., no. xxxx, pp. 1–6, 2021, doi: 10.1016/j.matpr.2021.05.069.
P. T. Dao, N. Y. T. Tran, Q. N. Tran, G. L. Bach, and T. V. Lam, “Kinetics of pilot-scale essential oil extraction from pomelo (Citrus maxima) peels: Comparison between linear and nonlinear models,” Alexandria Eng. J., 2021, doi: 10.1016/j.aej.2021.07.002.
H.-Y. Kim, “Statistical notes for clinical researchers: simple linear regression 2 – evaluation of regression line,” Restor. Dent. Endod., vol. 43, no. 3, pp. 1–5, 2018, doi: 10.5395/rde.2018.43.e34.
L. Novianto and A. M. Fuadi, “METODE SOXHLETASI PADA PENGAMBILAN MINYAK KEMIRI ( Aleurites moluccanus ),” vol. 3, no. 1, pp. 1–6, 2023, doi: 10.46964/jimsi.v3i1.365.
E. M. Putri, Uji Kualitas Minyak Kemiri (Aleurites moluccana (L.) Willd) dengan Metode Pengepressan Menggunakan Variasi Temperatur dan Ukuran Biji. 2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Chemical Process Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.