The Influence of Carbonization Temperature Variations on the Quality of Durian Peel-Based Bio-briquettes

Authors

  • Dennis Nury Politeknik Industri Petrokimia Banten
  • Muhammad Zulfikar Luthfi Politeknik Industri Petrokimia Banten
  • Andri Saputra Politeknik ATK Yogyakarta

DOI:

https://doi.org/10.33096/jcpe.v9i3.1486

Keywords:

Durian Peel, Biobriquettes, Carbonization, Calorific Value, Sustainable Energy

Abstract

The increasing global energy demand and environmental concerns necessitate the development of alternative energy sources. Durian peel, an abundant agricultural waste in Indonesia, presents significant potential for bio-briquette production due to its high cellulose and lignin content. This study investigates the effect of carbonization temperature on the quality of durian peel-based bio-briquettes. Carbonization was conducted at 300°C, 400°C, 500°C, and 600°C, with proximate analysis and calorific value determination performed according to SNI 01-6235-2000 standards. The results demonstrate that higher carbonization temperatures reduce moisture and volatile matter while increasing fixed carbon and calorific value. At 500°C, the bio-briquettes exhibited optimal properties, including moisture content (7.47%), volatile matter (13.54%), and a calorific value exceeding 5000 cal/g, meeting the SNI standard. However, ash content at this temperature (9.33%) slightly exceeded the standard (≤8%), highlighting a trade-off between energy efficiency and residual minerals. This study concludes that 500°C is the optimal carbonization temperature for producing high-quality bio-briquettes from durian peel, balancing energy output and combustion efficiency. Further optimization of the process is recommended to enhance fixed carbon content and minimize ash. These findings contribute to sustainable energy practices by transforming agricultural waste into a renewable energy resource, addressing both waste management and energy challenges.

Downloads

Download data is not yet available.

References

M. Azhar and D. A. Satriawan, “Implementasi Kebijakan Energi Baru dan Energi Terbarukan Dalam Rangka Ketahanan Energi Nasional,” Adm. Law Gov. J., vol. 1, no. 4, pp. 398–412, 2018, doi: 10.14710/alj.v1i4.398-412.

S. Daowwiangkan, S. Thiangchanta, R. Khiewwijit, P. Suttakul, and Y. Mona, “Investigation of the physical properties and environmental impact of lemongrass biobriquettes,” Energy Reports, vol. 9, no. S11, pp. 439–444, 2023, doi: 10.1016/j.egyr.2023.09.005.

C. Sun, A. Xia, Q. Liao, G. Kumar, and J. D. Murphy, “Biomass and bioenergy: Current state,” Green Energy Technol., vol. 0, no. 9789811076763, pp. 3–37, 2018, doi: 10.1007/978-981-10-7677-0_1.

F. Rosillo-Calle, “A review of biomass energy - shortcomings and concerns,” J. Chem. Technol. Biotechnol., vol. 91, no. 7, pp. 1933–1945, 2016, doi: 10.1002/jctb.4918.

F. Fahrulsyah, K. R. Ningtyas, T. . Agassi, and M. P. M. Harahap, “Evaluating the Quality and Added Value of Durian Peel Briquettes Using Tar Waste as Adhesive,” AJARCDE (Asian J. Appl. Res. Community Dev. Empower., pp. 183–189, 2023, doi: 10.29165/ajarcde.v7i3.360.

H. Liu, J. Liu, H. Huang, F. Evrendilek, S. Wen, and W. Li, “Optimizing bioenergy and by-product outputs from durian shell pyrolysis,” Renew. Energy, vol. 164, pp. 407–418, 2021, doi: 10.1016/j.renene.2020.09.044.

S. Rahmawati, Afadil, Suherman, T. Santoso, P. H. Abram, and Rabasia, “The utilization of durian peels (Durio zibethinus) for the manufacturing of charcoal briquettes as alternative fuel,” J. Pengelolaan Sumberd. Alam dan Lingkung., vol. 13, no. 1, pp. 76–87, 2023, doi: 10.29244/jpsl.13.1.76-87.

P. Donald, C. Sanchez, M. Me, T. Aspe, and K. N. Sindol, “An Overview on the Production of Bio-briquettes from Agricultural Wastes: Methods, Processes, and Quality,” J. Agric. Food Eng., vol. 3, no. 1, pp. 1–17, 2022, doi: 10.37865/jafe.2022.0036.

W. Nuriana, N. Anisa, and Martana, “Synthesis preliminary studies durian peel bio briquettes as an alternative fuels,” Energy Procedia, vol. 47, pp. 295–302, 2014, doi: 10.1016/j.egypro.2014.01.228.

K. Johanes Saragih, N. A. Abdullah, and S. Bahri Widodo, “Effect of Carbonization Temperature of Charcoal Briquettes from Corn Cob with Gondorukem (Resina Colophonium) Adhesive On Briquette Quality Standards,” JURUTERA - J. Umum Tek. Terap., vol. 11, no. 02, pp. 83–91, 2024, doi: 10.55377/jurutera.v11i02.10364.

W. Maulina et al., “Carbonization Process of Water Hyacinth as an Alternative Renewable Energy Material for Biomass Cook Stoves Applications,” IOP Conf. Ser. Earth Environ. Sci., vol. 239, no. 1, 2019, doi: 10.1088/1755-1315/239/1/012035.

D. Ryu, J. Lee, D. Kim, K. Jang, J. Lee, and D. Kim, “Enhancement of the Biofuel Characteristics of Empty Fruit Bunches through Hydrothermal Carbonization by Decreasing the Inorganic Matters,” Energies, vol. 15, no. 21, 2022, doi: 10.3390/en15218154.

K. O. Krysanova, V. M. Zaichenko, G. A. Sychev, and A. Y. Krylova, “Effect of Temperature on the Hydrothermal Carbonization of Peat,” Solid Fuel Chem., vol. 52, no. 6, pp. 370–372, 2018, doi: 10.3103/S036152191806006X.

Z. Liu, W. Niu, H. Chu, T. Zhou, and Z. Niu, “Effect of the Carbonization Temperature on the Properties of Biochar Produced from the Pyrolysis of Crop Residues,” BioResources, vol. 13, no. 2, pp. 3429–3446, 2018, doi: 10.15376/biores.13.2.3429-3446.

D. Hidayat Fahrul, “Analisis Pengaruh Variasi Temperatur Karbonisasi Dan Komposisi Bahan Terhadap Uji Proksimat Briket Campuran Kulit Singkong Dan Ampas Tahu,” pp. 31–41, 2023.

F. Asip, E. Sandra, and S. Nurhasanah, “Pengaruh Temperatur Karbonisasi dan Komposisi Arang Terhadap Kualitas Biobriket dari Campuran Cangkang Biji Karet dan Kulit Kacang Tanah,” Jur. Tek. Kim. Fak. Tek. Univ. Sriwij., vol. 23, no. 1, p. 30, 2017.

D. F. Nury, M. Z. Luthfi, and S. Zullaikah, “Pengaruh Kondisi Temperatur Pirolisis Tandan Kosong Kelapa Sawit Terhadap Komposisi Produk Tar,” J. Res. Chem. Eng., vol. 3, no. 1, pp. 22–27, 2022.

S. Zullaikah, A. S. Lenggono, D. F. Nury, and M. Rachimoellah, “Effect of blending ratio to the liquid product on co-pyrolysis of low rank coal and oil palm empty fruit bunch,” MATEC Web Conf., vol. 156, pp. 0–4, 2018, doi: 10.1051/matecconf/201815603023.

S. Stegen and P. Kaparaju, “Effect of temperature on oil quality obtained through pyrolysis of sugarcane bagasse,” Fuel, vol. 276, 2020, doi: 10.1016/j.fuel.2020.118112.

J. Cheng, S. C. Hu, G. T. Sun, Z. C. Geng, and M. Q. Zhu, “The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process,” Ind. Crops Prod., vol. 170, 2021, doi: 10.1016/j.indcrop.2021.113690.

O. F. Obi, R. Pecenka, and M. J. Clifford, “A Review of Biomass Briquette Binders and Quality Parameters,” Energies, vol. 15, no. 7, 2022, doi: 10.3390/en15072426.

S. Das and V. V. Goud, “Optimal production of bio-char with maximum carbon content under both inert (N2) and reactive (CO2) environment employing RSM,” Environ. Prog. Sustain. Energy, vol. 41, no. 6, 2022, doi: 10.1002/ep.13924.

H. Kadir, S. Yani, and R. Kalla, “Pemanfaatan Kulit Ari Biji Kakao dan Tempurung Kelapa dalam Pembuatan Briket sebagai Bahan Bakar Alternatif,” J. Konstr. Tek. …, vol. 01, no. 12, pp. 10–18, 2022, [Online].Available:https://mail.pasca-umi.ac.id/index.php/kons/article/view/1266%0Ahttps:// mail. pasca-umi.ac.id/index.php/kons/article/download/1266/1441

H. E. Handayani, Y. B. Ningsih, and M. S. Meriansyah, “Effects of carbonization duration on the characteristics of bio-coal briquettes (coal and cane waste),” IOP Conf. Ser. Mater. Sci. Eng., vol. 478, no. 1, 2019, doi: 10.1088/1757-899X/478/1/012027.

I. K. Ariani, E. M. Anifah, M. M. A. Harfadli, U. Sholikah, and I. N. Hawani, “Valorization of durian peel waste and sewage sludge as bio-briquette,” IOP Conf. Ser. Earth Environ. Sci., vol. 1239, no. 1, 2023, doi: 10.1088/1755-1315/1239/1/012018.

V. Efelina, V. Naubnome, and D. A. Sari, “Biobriket Limbah Kulit Durian dengan Pencelupan pada Minyak Jelantah,” CHEESA Chem. Eng. Res. Artic., vol. 1, no. 2, pp. 37–42, 2018.

I. A. Cholilie and L. Zuari, “Pengaruh Variasi Jenis Perekat terhadap Kualitas Biobriket Berbahan Serabut dan Tandan Buah Lontar (Borassus flabellifer L.),” Agro Bali Agric. J., vol. 4, no. 3, pp. 391–402, 2021, doi: 10.37637/ab.v4i3.774.

K. Ku Ahmad, K. Sazali, and A. A. Kamarolzaman, “Characterization of fuel briquettes from banana tree waste,” Mater. Today Proc., vol. 5, no. 10, pp. 21744–21752, 2018, doi: 10.1016/j.matpr.2018.07.027.

G. Liu, Q. Xu, S. F. Abou-Elwafa, M. A. Alshehri, and T. Zhang, “Hydrothermal Carbonization Technology for Wastewater Treatment under the ‘Dual Carbon’ Goals: Current Status, Trends, and Challenges,” Water (Switzerland), vol. 16, no. 12, 2024, doi: 10.3390/w16121749.

P. Kipngetich, R. Kiplimo, J. K. Tanui, and P. Chisale, “Effects of carbonization on the combustion of rice husks briquettes in a fixed bed,” Clean. Eng. Technol., vol. 13, 2023, doi: 10.1016/j.clet.2023.100608.

Downloads

Published

01-07-2025

How to Cite

The Influence of Carbonization Temperature Variations on the Quality of Durian Peel-Based Bio-briquettes. (2025). Journal of Chemical Process Engineering, 9(3), 193-210. https://doi.org/10.33096/jcpe.v9i3.1486