Potential of Freshwater Microalgae in Biodegradation of Disposable Face Masks
DOI:
https://doi.org/10.33096/jcpe.v9i2.1002Keywords:
Biodegradation, Covid-19, Pineapple liquid waste, Disposable face masks, MicroalgaeAbstract
The use of disposable face masks can reduce the transmission of Covid-19 through saliva splashes from infected patients. However, the use of these masks causes waste generation that has the potential to release microplastic fibers into the environment. Biodegradation by freshwater microalgae can be a solution to handling disposable face mask waste. Microalgae were isolated from retention ponds in Institut Teknologi Sumatera using Walne fertilizer and pineapple liquid waste (LCN) as alternative growth media. Selected isolate was used to degrade three-ply mask pieces with Walne:LCN media ratios of 1:0,; 0:1, and 1:1 as well as Walne media without the addition of isolate as a control. Analysis of the masks degradation results was carried out using gravimetric and Fourier Transform Infraredmethods. Gravimetric analysis showed a decrease in mask mass after degradation for the control, 1:0, 0:1, 1:1 treatments, which were 0.0004grams, 0.0054grams, 0.0088grams and 0.0193grams, respectively. FTIR analysis showed new functional groups (O-H), increased C=C, and decreased C-H % transmittance of the masks after degradation. It can be concluded from the analysis that microalgae isolated from ITERA’s retention basin was able to degrade disposable masks, which is characterized by a decrease in mask mass and changes in % transmittance of C=C and C-H functional groups. The addition of LCN did not show a significant effect on mask degradation compared to variations without LCN, as evidenced by the FTIR results in the 1:1 variation where no alkene groups appeared and the alkyl group spectrum peaks were not much different from the control
References
T. Bhatt, V. Kumar, S. Pande, R. Malik, A. Khamparia, and D. Gupta, “A Review on COVID-19,” Stud. Comput. Intell., vol. 924, no. April, pp. 25–42, 2021, doi: 10.1007/978-3-030-60188-1_2.
R. Rijal, D. Darlin, and M. Haz, “Penerapan Protokol Kesehatan dalam Pelayanan Publik Sebagai Upaya Pencegahan Covid-19 di Kampung Yafdas,” Pengabdi, vol. 2, no. 1, pp. 66–83, 2021, doi: 10.26858/pengabdi.v2i1.23639.
A. Khoironi, H. Hadiyanto, E. Hartini, I. Dianratri, F. A. Joelyna, and W. Z. Pratiwi, “Impact of disposable mask microplastics pollution on the aquatic environment and microalgae growth,” Environ. Sci. Pollut. Res., vol. 30, no. 31, pp. 77453–77468, 2023, doi: 10.1007/s11356-023-27651-5.
S. Victory, R. E. Putri, S. Sakhila, S. Desbait Hutagalung, A. Amelia, and A. Fabiani, “The Utilization of Medical Mask Waste as a High-Quality Nanofiber Material: a Review,” Indones. J. Chem. Sci., vol. 10, no. 2, pp. 89–94, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/ijcs/article/view/49538
A. N. Islami, “Biodegradasi Plastik Oleh Mikroorganisme,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.
J. Oliveira et al., “Marine Environmental Plastic Pollution: Mitigation by Microorganism Degradation and Recycling Valorization,” Front. Mar. Sci., vol. 7, no. December, 2020, doi: 10.3389/fmars.2020.567126.
F. S. Purnamawat, T. R. Soeprobowati, and M. Izzati, “Potensi Chlorella vulgaris Beijerinck Dalam Remediasi Logam Berat Cd Dan Pb Skala Laboratorium.,” Bioma Berk. Ilm. Biol., vol. 16, no. 2, p. 102, 2014, doi: 10.14710/bioma.16.2.102-113.
H. Hadiyanto, A. Khoironi, I. Dianratri, S. Suherman, F. Muhammad, and S. Vaidyanathan, “Interactions between polyethylene and polypropylene microplastics and Spirulina sp. microalgae in aquatic systems,” Heliyon, vol. 7, no. 8, p. e07676, 2021, doi: 10.1016/j.heliyon.2021.e07676.
W. Falah et al., “Polyethylene terephthalate degradation by Microalga Chlorella vulgaris along with pretreatment,” Mater. Plast., vol. 57, no. 3, pp. 260–270, 2020, doi: 10.37358/MP.20.3.5398.
Y. Andriani, D. F. Shiyam, Z. Hasan, and F. M. Pratiwy, “The Use of Various Natural Fertilizers in the Cultivation of Chlorella sp.,” J. Agroqua Media Inf. Agron. dan Budid. Perair., vol. 21, no. 1, p. 33, 2023, doi: 10.32663/ja.v21i1.3238.
M. K. Prihardianto, D. Chilmawati, and Subandiyono, “Pola pertumbuhan Thalassiosira sp. pada media walne dengan rasio N/P berbeda,” J. Sains Akuakultur Trop., vol. 2, pp. 196–206, 2023.
L. Triana and A. Sutanto, “PENGARUH LIMBAH CAIR NANAS (LCN)TERHADAP PERTUMBUHAN DAN KANDUNGAN LEMAKChlorella sp,” J. Lentera Pendidik. Pus. Penelit., vol. 1, no. 2, pp. 170–178, 2016.
A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita, “How to read and interpret ftir spectroscope of organic material,” Indones. J. Sci. Technol., vol. 4, no. 1, pp. 97–118, 2019, doi: 10.17509/ijost.v4i1.15806.
A. Sutanto and A. Qurniani, “Variasi Dosis Pupuk Cair Lcn (Limbah Cair Nanas) terhadap Pertumbuhan Anggrek Dendrobium Sp untuk Menyusun Panduan Praktikum,” J. Bioedukatika, vol. 3, no. 1, p. 1, 2015, doi: 10.26555/bioedukatika.v3i1.4129.
L. E. Richter, A. Carlos, and D. M. Beber, Freshwater Algae: Identification and Use as Bioindicators. Oxford: Wiley-Blackwell, 2010.
E. Gildantia, R. S. Ferniah, A. Budiharjo, A. Suprihadi, M. Zainuri, and H. P. Kusumaningrum, “Identifikasi Spesies Mikroalga dari BBPBAP Jepara secara Morfologi dan Molekuler menggunakan 18S rDNA,” Bul. Oseanografi Mar., vol. 11, no. 2, pp. 167–176, 2022, doi: 10.14710/buloma.v11i2.39703.
E. R. S. Dewi and R. Nuravivah, “Potential of Microalgae Chlorella vulgaris As Bioremediation Agents of Heavy Metal Pb (Lead) On Culture Media,” E3S Web Conf., vol. 31, pp. 3–6, 2018, doi: 10.1051/e3sconf/20183105010.
L. P. Acurio et al., “Antimicrobial potential of Chlorella algae isolated from stacked waters of the Andean Region of Ecuador,” IOP Conf. Ser. Earth Environ. Sci., vol. 151, no. 1, 2018, doi: 10.1088/1755-1315/151/1/012040.
S. S. Sawant and V. K. Mane, “Nutritional profile, antioxidant, antimicrobial potential, and bioactives profile of chlorella emersonii kj725233,” Asian J. Pharm. Clin. Res., vol. 11, no. 3, pp. 220–225, 2018, doi: 10.22159/ajpcr.2018.v11i3.21990.
J. L. da Maia et al., “Microalgae starch: A promising raw material for the bioethanol production,” Int. J. Biol. Macromol., vol. 165, pp. 2739–2749, 2020, doi: 10.1016/j.ijbiomac.2020.10.159.
A. Cesaro, F. Pirozzi, A. Zafırakou, and A. Alexandraki, “Microplastics in sewage sludge destined to anaerobic digestion: The potential role of thermal pretreatment,” Chemosphere, vol. 309, p. 136669, Dec. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.136669.
E. Dwicania, J. T. Lingkungan, A. Lanskap, and T. Lingkungan, “Biodegradasi Limbah Plastik Oleh Mikroorganisme,” 2014.
J. I. Nurdiana, N. Candrahanifa, N. Kamilalita, and E. N. Hidayah, “Perbandingan Antara Mikroalga Chlorella sp dan Spirulina plantesis dalam Penurunan Nitrat Fosfat pada Air Limbah Domestik Menggunakan Oxidation Ditch Algae Reactor (Odar),” Pros. ESEC, vol. 2, no. 1, pp. 14–19, 2021.
R. Rubiyah, M. Muliani, M. Mahdaliana, R. Rusydi, and M. Mainisa, “Application of liquid organic fertilizer from wild banana stem waste (Musa acuminate) and coconut husk as a culture medium for Spirulina platensis,” Acta Aquat. Aquat. Sci. J., vol. 10, no. 3, p. 235, 2023, doi: 10.29103/aa.v10i3.12200.
H. Hadiyanto, A. Khoironi, I. Dianratri, K. Huda, S. Suherman, and F. Muhammad, “Biodegradation of oxidized high-density polyethylene and oxo-degradable plastic using microalgae Dunaliella salina,” Environ. Pollut. Bioavailab., vol. 34, no. 1, pp. 469–481, 2022, doi: 10.1080/26395940.2022.2128884.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Chemical Process Engineering
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.