

Journal Of Industrial Engineering Management

(0)

(JIEM Volume 7. No 3 Tahun 2022)

INVENTORY CONTROL OF BROWN PAPER RAW MATERIALS USING THE MATERIAL REQUIREMENT PLANNING METHOD IN PAPER COMPANY

Sinta Khoiriyah Wulandari¹, Dwi Sukma Donoriyanro²

Department of Industrial Engineering, Faculty of Engineering, University of Pembangunan Nasional Veteran East Java¹²

Jalan Rungkut Madya No. 1, Gunung Anyar District, Surabaya City, East Java 60294 E-mail: khoiriyahsinta@gmail.com¹, dwisukama.ti@upnjatim.ac.id²

ABSTRACT

Inventory of raw materials is an essential element in the production process. The research was conducted in a paper company with different product demand problems each period, resulting in excessive raw material inventory in the warehouse and high inventory costs. Material Requirement Planning (MRP) is the right system to deal with uncertainty when planning raw material requirements. The lotting techniques used in this study are Lot For Lot (LFL), Economic Order Quantity (EOQ), and Fixed Period Requirements (FPR). For January 2021 - March 2022, the LFL lot size MRP method resulted in the smallest total inventory cost of Rp 92.228.707.169 and managed to save 9.2% of costs compared to the company's actual costs. Inventory control with LFL lot size for April 2022 – June 2023 requires 14 orders with the DSOCC raw material inventory 11.865.136,77 kg; OCC 5.256.037,55 kg; NDLKCA 4.262.881,19 kg; local box 3.340.998,93 kg and the total cost of inventory is Rp 110.075.072.816,14.

Keywords: Forecasting, Inventory, Material Requirement Planning, Raw Material

Article history:

Submitted 5 July 2022 Revised 12 July 2022 Accepted 3 August 2022 Available online 20 December 2022

Published By: Liscensed by: https://creativecommons.org/licenses/by-nc-sa/4.0/

Fakultas Teknologi Industri DOI : http://dx.doi.org/10.33536/jiem.v7i3.1202
Universitas Muslim Indonesia

Address:

Jl. Urip Sumoharjo Km. 5 (Kampus II UMI)

Makassar Sulawesi Selatan.

Email:

Jiem@umi.ac.id

Phone:

+6281341717729

+6281247526640

1. INTRODUCTION

Inventory is an asset that includes goods belonging to the company to be sold within a certain period, an inventory of goods still in the production process, or raw materials waiting for users in a production process (Lahu and Sumarauw, 2017). Inventory is one of the riskiest decisions in logistics management. Proper inventory handling will cause serious problems in increasing revenue and maintaining customer relationships (Alam, 2018).

This raw material inventory is important because the production process can only occur if there are enough raw materials to produce the product. Otherwise, the production process cannot be carried out and must be postponed until there is sufficient stock of raw materials. Furthermore, the delay in the production process can lead to a decrease in the company's productivity and the possible inability to meet customer demands. Therefore, raw material inventory control is needed to continue the production process to run smoothly and under control, minimize damage to the material, and determine the optimal raw material inventory (Uyun, Indrayanto and Kurniasih, 2020).

Several raw materials produce brown paper products, including DSOCC, OCC, NDLKCA, and Local Box. The problem faced by the company is that the demand for products in each period is different, resulting in an excessive inventory of raw materials in the warehouse and high inventory costs. In addition, the demand for various products is related to the raw materials used by the company in the production process. Therefore, the company must be precise and fast in inventory control.

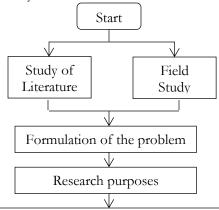
Following the problem description, the company should use a method to obtain optimal inventory costs. Many methods can be used to control inventory costs, one of which is the Material Requirement Planning (MRP) method. MRP is a system that is an arrangement of production plans and plans for ordering material components needed to support JIP (Syam, 2020). In general, it can be said that the purpose of MRP is to produce inventory information that can be used to support taking appropriate actions in production (Eddy and Jamudi, 2019). With the MRP system, the company's number of raw materials needed can be seen to complete the production process in the future. Therefore, the company can optimize the inventory of raw materials needed so that the amount of inventory is not too much or too little.

Several lotting techniques are used, including Lot For Lot (LFL) is a simple approach to determining the order schedule for each period (Wardani and Siswanti, 2018). The second lotting technique is Economic Order Quantity (EOQ), which uses the concept of minimizing total inventory costs (Susmita and Cahyana, 2018). Finally, the third lotting technique is the Fixed Period Requirement (FPR), which determines lot sizes that place orders over a predetermined period, both empirically and intuitively (Uyun, Indrayanto and Kurniasih, 2020).

Production control defines forecasting as estimating the expected demand level for a product or several products in a certain period in the future. Therefore, forecasting is an estimate. It can be said that forecasting is a scientific estimate, although there will be some errors due to limited human abilities (Susmita and Cahyana, 2018). Forecasting paper demand is made to determine the number of raw materials needed. Quantitative forecasting methods are grouped into two types, namely time series methods and causal methods (Pratama et al., 2020). In this study, several forecasting methods were used, namely Moving Average (MA), Weight Moving Average (WMA), and Single Exponential Smoothing (SES). The MA method is a forecasting method carried out by taking a group of observed values and looking for the average value as a forecast for the future period (Rachman, 2018). The WMA method is more responsive to changes because data from the new period usually gives greater weight (Awanda and Oktafianto, 2021). The SES method is a weighted moving average forecasting technique where the data is weighted by an exponential function (Samuel et al., 2020).

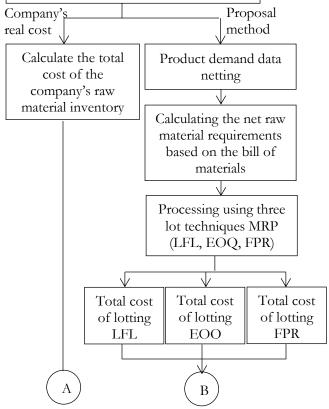
calculation of the Material Requirement Planning (MRP) method with the Lot Sizing technique showed that the Fixed Order Quantity (FOQ) method had a lower total cost of Rp 6.208.100 compared to other techniques Sizing (Desv Fadhlurrahman, 2019). Using the EOQ model from October 2014 to April 2015 provided savings of Rp 311.612.769 compared to the company's inventory control policy (Susanti, Machfud and Hasbullah, 2015). This research was strengthened by (Arief, Supriyadi and

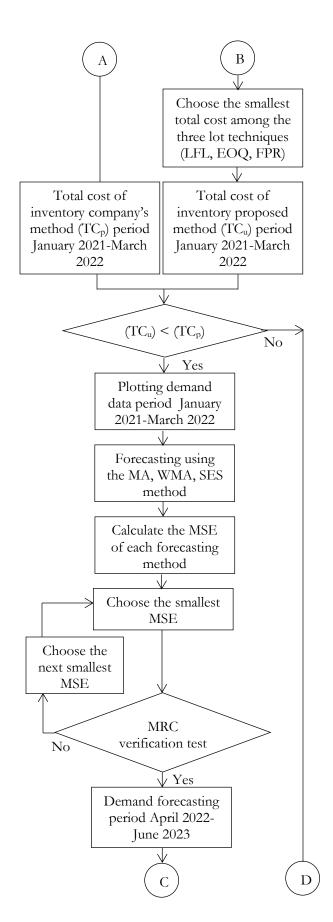
Cahayadi, 2017) by getting the profits from Rp. 6.096.088.915,00 or 25% higher than the method applied by the company.


Raw materials, better known as raw materials, are raw materials that will be processed into finished goods as the company's main product (Kurnia, Bastuti and Istiqomah, 2018). Improvement of the raw material inventory control system is needed to overcome the problems encountered. Inventory control by performing analytical calculations is expected to improve an effective and efficient production work system. Inventory control significantly impacts the company in the ongoing production process. The MRP method that will be applied is expected to provide a raw material inventory control plan to produce optimal costs.

2. METHODS

Identification of research needs describes the various stages of research that have been carried out. Starting with a field study conducted with a direct visit to the company and interviews with the parties concerned to understand the problem better. Literature study to determine methods and ways to solve problems. Determine the formulation of the problem followed by determining the objectives so that the research carried out has the direction and goals to be achieved. The data needed consists of 5 variable data: demand data for January 2021 - March 2022, product structure data and bills of material, data on raw material needs for January 2021 - March 2022, initial inventory, and production cost data.


Data processing begins with calculating safety stock, calculating the total cost of inventory using the Material Requirement Planning (MRP) lot size Lot For Lot (LFL), Economic Order Quantity (EOQ) method, and Fix Period Requirement (FPR). Choose the MRP with the lot size that produces the smallest total cost and compare it to the company's total actual cost. Next, plotting demand data to see data patterns as the basis for selecting forecasting methods. Next, determine the forecasting method and, with the help of POM-QM software, calculate each forecasting value method's error (MSE). verification test with moving range chart (MRC) to see deviations from forecasting data. Determine the need for raw materials for April 2022 - June 2023, which will be used as input


for data processing using the MRP method with the selected lot size to calculate the total cost of raw material inventory for April 2022 - June 2023. After carrying out the data processing process, a discussion is conducted to conclude this study.

Data collection:

- 1. Demand data for the period January 2021 March 2022
- 2. Product structure data and bills of material
- 3. Data on raw material needs for the period January 2021 March 2022
- 4. Initial inventory data
- 5. Production cost data

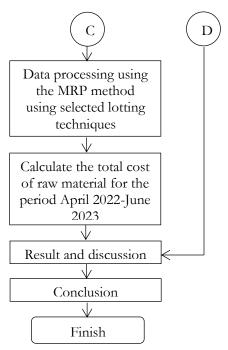


Figure 1. Research Methodology

3. FINDINGS AND DISCUSSION

3.1 Data Processing for January 2021 – March 2022 using the MRP method

Data processing with the MRP method aims to control the inventory of raw materials. The steps for controlling raw material inventory using the material requirements planning method are netting paper demand data, calculating net raw material requirements, calculating safety stock, and continuing the lotting process. Below is the demand data (Table 1) to be processed to determine the net raw material needed (Table 2).

Table	1.	Demand	Data

1 uou	1. 100000	ma Daia
Month	Year	Demand
January		1.119.469
February		665.860
March		1.320.844
April		614.580
May		866.496
June	2021	1.833.292
July		1.150.178
August		1.189.777
September		1.084.372
October		928.147
November		1.264.268
December		1.461.413
January		1.119.469
February	2022	1.618.072
March		1.498.389

Month	Year	DSOCC (kg)	OCC (kg)	NDLKCA (kg)	Local box (kg)
January		439.925,83	193.865,62	193.865,62	149.127,40
February		392.857,40	173.123,60	173.123,60	133.172,00
March		779.297,96	343.419,44	343.419,44	264.168,80
April		362.602,20	159.790,80	159.790,80	122.916,00
May		511.232,64	225.288,96	225.288,96	173.299,20
June	2021	1.081.642,28	476.655,92	476.655,92	366.658,40
July	2021	678.605,02	299.046,28	299.046,28	230.035,60
August		701.968,43	309.342,02	309.342,02	237.955,40
September		639.779,48	281.936,72	281.936,72	216.874,40
October		547.606,73	241.318,22	241.318,22	185.629,40
November		745.918,12	328.709,68	328.709,68	252.853,60
December		862.233,67	379.967,38	379.967,38	292.282,60
January		660.486,71	291.061,94	291.061,94	223.893,80
February	2022	954.662,48	420.698,72	420.698,72	323.614,40
March		884.049,51	389.581,14	389.581,14	299.677,80
Total		10.242.868,46	4.513.806,44	4.513.806,44	3.472.158,80

Bill of Materials (BOM) contains information on what raw materials or assemblies are needed to be able to produce goods (Aziz and Suyatno, 2019). The raw materials needed to produce brown paper products can be seen in (Figure 2).



Figure 2. Product Structure Brown Paper

Based on the data structure, it can generate a Bill of Materials (BOM) (Table 3)

Table 3. Bill of Material

Level	Item	Amount	Unit	Description
0	Brown	2.937	Kilo	Produce
O	Paper		gram	Troduce
1	DSOCC	1.739,01	Kilo	Buy
		770 00	gram	,
1	OCC	772,89	Kilo	Buy
		772,89	gram Kilo	
1	NDLKCA	772,07	gram	Buy
	T 1D	579,67	Kilo	T.
1	Local Box	. , .	gram	Buy

Initial inventory data of raw materials records each material from products to raw materials stored in inventory. Initial inventory data includes the inventory and lead time taken

in December 2020 as initial data for input in the MRP process. Beginning inventory data can be seen in (Table 4).

Table 4. Beginning Inventory of Raw Materials

Item	Initial inventory (kg)	Lead times
Brown paper	373.832	-
DSOCC	1.225.120	1 month
OCC	565.440	1 month
NDLKCA	565.440	1 month
Local Box	131.079	1 month

Safety stock is held to anticipate unexpected stock-out conditions in the company's inventory control. Calculation of safety stock can be known by multiplying the safety factor by the standard deviation with the following formula (Efendi, Hidayat and Faridz, 2019):

$$SS = Z \times \sqrt{lead \ time} \times \sigma \tag{1}$$

The results of the safety stock calculation can be seen in (Table 5).

Rawy Materials

Raw Materials			
DSOCC (Kg)	OCC (Kg)	NDLKCA (Kg)	Local Box (Kg)
188.633,11	83.126,46	83.126,46	63.943,43

There are three types of lot-sizing used in data processing, including Lot For Lot (LFL), Economic Order Quantity (EOQ), and Fix Period Requirement (FPR), to get the minimum

cost. The total cost of inventory with LFL lot size can be seen in (Table 6).

Table 6. Total Inventory Cost of All Raw Materials with Lot Size LFI

will .	
Total inventor	y cost with <i>lot size</i> LFL
Raw materials	Total cost
DSOCC	Rp 42.492.582.161,46
OCC	Rp 16.711.912.815,42
NDLKCA	Rp 19.282.473.675,53
Local Box	Rp 13.741.738.516,57
Total	Rp 92.228.707.168,98

To determine the economic order quantity (EOQ) can be calculated by the formula (Indah, Purwasih and Maulida, 2018):

$$EOQ = \sqrt{\frac{2.S.D}{H}}$$
 (2)

The calculation results of the EOQ (Table 7) and the total cost of inventory with lot size EOQ (Table 8).

Table 7. EOO Calculation Result

	~					1 , , , , , , , , , , , , , , , , , , ,
Raw	D (kg)	RC (kg)	HC	EOQ	Total	Rp. 93.573.861.069,14
material			(Rp/kg)	(kg)		
DSOCC	10.242.868,46	3.890.000	83,56	976.565,51	The next ste	ep is to compare the total cost
OCC	4.513.806,44	3.150.000	74,92	616.088,15 of	inventory usir	ng the MRP method with the

4.513.806,44 3.575.000

NDLKCA

Local Box 3.472.158,80 2.900.000 75,36 516.943,81 efficiency (Table 10).

Table 10. Comparison and the Level of Cost Efficiency				
Lot Size	Nominal	Company's real cost	Difference	
LFL	Rp 92.228.707.169		Rp 9.308.378.078	
EOQ	Rp 99.705.201.420	Rp 101.537.085.247	Rp 1.831.883.827	
FPR	Rp 93.573.861.069	_	Rp 7.963.224.178	

From the calculation of the total cost, raw material inventory was carried out from January 2021 to March 2022 using the company's actual and MRP methods. It can be seen that the company's actual method obtained a total cost of Rp 101,537,085,247. While the MRP method with lot size LFL obtained a total cost of Rp. 92,228,707,169, lot size EOQ obtained a total cost of Rp. 99,705,201,420, and lot size FPR obtained a total cost of Rp. 93,573,861,069. So it can be seen that the MRP lot size LFL method is a lotting technique that produces the smallest total cost of raw material inventory compared to other lotting techniques.

Calculate the level of cost efficiency in order to know whether the proposed MRP method can be used or not. As for how to

Table 8. Total Inventory Cost of All Raw Materials with Lot Size EOO

Total inventory	y cost with <i>lot size</i> EOQ
Raw materials	Total cost
DSOCC	Rp. 45.430.524.054,18
OCC	Rp. 18.112.865.412,40
NDLKCA	Rp. 20.915.798.432,84
Local Box	Rp. 15.246.013.520,16
Total	Rp. 99.705.201.419,59

The results of calculating the total cost of inventory using the lot size FPR can be seen in (Table 9).

Table 9. Total Inventory Cost of All Raw Materials with Lot Size FPR

Total inventor	y cost with lot size FPR
Raw materials	Total cost
DSOCC	Rp. 42.846.157.572,87
OCC	Rp. 16.953.375.271,74
NDLKCA	Rp. 19.745.435.969,40
Local Box	Rp. 14.028.892.255,13
Total	Rp. 93.573.861.069,14

84,47 618.120,63 company's total actual costs and calculate cost-

calculate the level of cost efficiency, it can be done by comparing the MRP lot size LFL (TC_b) method with the company's actual method (TC_a) as follows:

$$Eff = \frac{(TC_a) - (TC_b)}{(TC_a)} \times 100\%$$
 (3)

Based on the cost-efficiency of raw material inventory, it can be seen that using the MRP lot size LFL method can save raw material inventory costs by 9,2%. Therefore, the proposed MRP method can control raw material inventory costs from April 2022 to June 2023.

3.2 Forecasting Period April 2022 - June

Forecasting aims to estimate how much demand and need in the future. After plotting the demand data to find out the data pattern, it is known that the demand data seems to fluctuate in parallel, which is called a horizontal pattern. Forecasting methods that match the horizontal pattern are Moving Average (MA), Weight Moving Average (WMA), and Single Exponential Smoothing (SES). After performing forecasting calculations according to the data plot, each forecasting method's Mean Square Error (MSE) value is obtained with the help of POM-QM software (Table 11).

Table 11. Comparison MSE

	MSE
Moving Average	120.319.200.000
Weight Moving Average	135.486.000.000
Single Exponential Smoothing (0,2)	122.798.600.000

Based on the MSE value, it can be seen that forecasting using Moving Averages has the smallest MSE value. Next, perform a data verification test to see whether the selected forecasting results can be used or not using the Moving Range Chart (MRC) in (Figure 3).

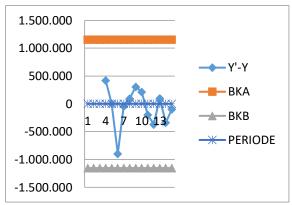


Figure 3. Demand Forecasting MRC Graph
The results show that all data are controlled so that the forecasting data using moving averages can be used to calculate inventory control for April 2022 to June 2023.

3.3 Calculation of Total Inventory Cost for the Period April 2022 – June 2023 using the MRP Method

After finding the chosen forecasting method, the next step is to calculate the cost of raw material for brown paper for the period April 2022 to June 2023 based on the demand forecasting data that has been done. Below (Table 12) is data on raw material requirements.

Table 12. Net Raw Material Demand Data for the Period April 2022 – June 2023

	1 4000 12.1 (01 1 4 mm 1 1 mm 1 mm 1 mm 1 mm 1 mm 2 mm 2				
Moth	Year	DSOCC (kg)	OCC (kg)	NDLKCA (kg)	Local Box (kg)
April		624.674,69	275.280,37	275.280,37	211.754,13
May		888.168,76	391.396,40	391.396,40	301.074,16
June		847.636,68	373.534,81	373.534,81	287.334,47
July		849.009,76	374.139,89	374.139,89	287.799,92
August		856.290,56	377.348,38	377.348,38	290.267,99
September	2021	861.605,07	379.690,37	379.690,37	292.069,51
October	2021	850.979,00	375.007,69	375.007,69	288.467,46
November		855.635,13	377.059,55	377.059,55	290.045,81
December		856.291,54	377.348,81	377.348,81	290.268,32
January		856.073,06	377.252,54	377.252,54	290.194,26
February		854.301,89	376.472,02	376.472,02	289.593,86
March		855.999,91	377.220,30	377.220,30	290.169,46
April		855.555,50	377.024,46	377.024,46	290.018,81
May	2022	855.458,29	376.981,62	376.981,62	289.985,86
June		855.285,76	376.905,59	376.905,59	289.927,38
Total		12.622.965,58	5.562.662,80	5.562.662,80	4.278.971,38

Initial inventory data includes the inventory and lead time taken in March 2022 as initial data for input in the MRP process. Beginning inventory data can be seen in (Table 13).

Table 13. Initial Inventory of Raw Materials

		2 2		
No	No Item	Initial	Lead	
110		inventory	times	
1	Brown Paper	353.206	-	
2	DSOCC	812.460	1 month	
3	OCC	330.700	1 month	
4	NDLKCA	275.000	1 month	
5	Local Box	149.679	1 month	

The results of the safety stock calculation for April 2022 to June 2023 can be seen in (Table 14).

Table 14. Safety Stock

Bahan Baku			
DSOCC (Kg)	OCC (Kg)	NDLKCA (Kg)	Box Lokal (Kg)
54.631,45	24.074,87	24.074,87	18.519,13

After getting the data input results for the Material Requirement Planning (MRP) method, the next step is to process the MRP lot size Lot For Lot (LFL). (Table 15)

Table 15. Raw Material DSOCC using Lot Size LFL

	1 able 13. Kaw Material DSOCC using Lot Size LFL					
Level: 1	Lead times: 1 month					
Raw material: DSOCC	Safety Stock: 54.631,45 kg					
Period	0	Apr 2022	May 2022	Jun 2022	Jul 2022	Aug 2022
Gross Requirement		624.674,69	888.168,76	847.636,68	849.009,76	856.290,56
Scheduled Receipt						
Projected on-Hand	812.460	187.785,57	54.631,45	54.631,45	54.631,45	54.631,45
Net Requirement			755.014,64	847.636,68	849.009,76	856.290,56
Planned Order Receipt			755.014,64	847.636,68	849.009,76	856.290,56
Planned Order Release		755.014,64	847.636,68	849.009,76	856.290,56	861.605,07
Period	Sep 2022	Oct 2022	Nov 2022	Des 2022	Jan 2023	Feb 2023
Gross Requirement	861.605,07	850.979,00	855.635,13	856.291,54	856.073,06	854.301,89
Scheduled Receipt						
Projected on-Hand	54.631,45	54.631,45	54.631,45	54.631,45	54.631,45	54.631,45
Net Requirement	861.605,07	850.979,00	855.635,13	856.291,54	856.073,06	854.301,89
Planned Order Receipt	861.605,07	850.979,00	855.635,13	856.291,54	856.073,06	854.301,89
Planned Order Release	850.979,00	855.635,13	856.291,54	856.073,06	854.301,89	855.999,91
						_
Period	Mar 2023	Apr 2023	May 2023	Jun 2023	Total	
Gross Requirement	855.999,91	855.555,50	855.458,29	855.285,76	12.622.965,5	58
Scheduled Receipt						
Projected on-Hand	54.631,45	54.631,45	54.631,45	54.631,45	1.765.086,0)8
Net Requirement	855.999,91	855.555,50	855.458,29	855.285,76	11.865.136,7	77
Planned Order Receipt	855.999,91	855.555,50	855.458,29	855.285,76	11.865.136,7	77
Planned Order Release	855.555,50	855.458,29	855.285,76		11.865.136,7	77
	·	·	·	·		

Table 16. Total Inventory Cost of All Raw Materials with Lot Size LFL

7T . 1		
Total inventory cost with LFL		
Raw material	Total cost	
DSOCC	Rp 54.378.165.090,44	
OCC	Rp 21.616.497.504,42	
NDLKCA	Rp 20.250.716.803,00	
Local Box	Rp 13.829.693.418,28	
Total	Rp 110.075.072.816,14	

Inventory control of brown paper raw materials for the period April 2022 to June 2023 uses the Material Requirement Planning (MRP) lot size Lot For Lot (LFL) method, which requires a total order of 11.865.136,77 kg of DSOCC raw materials; OCC raw materials as much as 5.256.037,55 kg; NDLKCA raw materials as much as 4.262.881,19 kg; and Local Box raw materials as much as 3.340.998,93 kg with the number of orders for each raw material

14 times in 15 months. In comparison, the total cost of raw material inventory needed Rp 110.075.072.816,14.

4. CONCLUSION AND SUGGESTION

4.1 Conclusion

Based on the data processing results, the total cost of brown paper raw materials is calculated for January 2021 to March 2023. Using the company's actual and the Material Requirement Planning (MRP) method, the cost of raw materials includes the company's actual Rp 101.537. 085.247; the proposed method is the MRP lot size LFL of Rp 92.228.707.169; lot size EOQ of Rp 99.705.201.420; and the lot size FPR is Rp 93.573.861.069. The smallest total cost of raw material inventory uses the MRP lot size LFL method of all the lotting techniques used. So the MRP lot size LFL method was chosen to control the brown paper raw materials inventory from April 2022 to June 2023 with a percentage savings of 9,2% or a cost difference of Rp 9.308.378.078.

Inventory control of brown paper raw materials for April 2022 to June 2023 uses demand forecasting with the moving average method, which gets an MSE value of 120.319.200.000. For the Material Requirement Planning (MRP) lot size Lot for Lot (LFL) method, a total order for DSOCC raw materials is 11.865.136,77 kg; OCC raw materials as much as 5.256.037,55 kg; NDLKCA raw materials as much as 4.262.881,19 kg; Local Box raw materials as much as 3.340.998,93 kg with the number of orders for each raw material as much as 14 times in 15 periods. Therefore, the total cost of raw material inventory needed is Rp 110.075.072.816,14.

4.2 Suggestion

Suggestions for companies that can be used to improve inventory control are

- 1. The company pays attention to controlling the brown paper raw materials inventory to avoid purchasing excessive raw materials, resulting in higher inventory costs.
- 2. Provide safety stock to anticipate a shortage of raw materials.
- 3. Consider the company to use the Material Requirement Planning (MRP) lot size Lot For Lot (LFL) in controlling raw material

inventory because it is proven that there are inventory costs.

References

- Alam, W.P. (2018) 'Perencanaan Persediaan Bahan Baku Wajan Dengan Metode MRP (Material Requirement Planning) Pada Perusahaan Cor Alumunium Bintang Dua Di Kec. Cikoneng Kab. Ciamis', *Jurnal Media Teknologi*, 5(1), pp. 41–62.
- Arief, M., Supriyadi and Cahayadi, D. (2017) 'Analisis Perencanaan Persediaan Batubara FX Dengan Metode Material Requirement Planning', *Jurnal Manajemen Industri Dan Logistik*, 1(2), pp. 148. doi:10.30988/jmil.v1i2.25.
- Awanda, R. and Oktafianto, K. (2021) 'Peramalan Permintaan Paving Menggunakan Metode Weighted Moving Average Dan Exponential Smoothing', Jurnal Matematika, 03(01), pp. 14–18.
- Aziz, M.F. and Suyatno, D.F. (2019) 'Rancang Bangun Material Requirement Planning Pada Mebel Rizky', *Jurnal Manajemen Informatika*, 9(2), pp. 113–120.
- Desy, N. and Fadhlurrahman, R. (2019) 'Analisis Pengendalian Persediaan Dengan Metode Material Requirement Planning (MRP) pada Produk Kertas IT170-80gsm di PT Indah Kiat Pulp & Paper Tbk', *Jurnal Penelitian dan Aplikasi Sistem & Teknik Industri (PASTI)*, XIII(3), pp. 311–325.
- Eddy and Jamudi (2019) Perencanaan Persediaan Bahan Baku Menggunakan Metode Material Recruitment Planning (MRP) Pada PT. ABC', *Jurnal Ilmiah Teknologi Harapan*, 7(2), pp. 36–41.
- Efendi, J., Hidayat, K. and Faridz, R. (2019) 'Analisis Pengendalian Persediaan Bahan Baku Kerupuk Mentah Potato dan Kentang Keriting Menggunakan Metode Economic Order Quantity (EOQ)', Performa: Media Ilmiah Teknik Industri, 18(2), pp. 125–134. doi:10.20961/performa.18.2.35418.
- Indah, D.R., Purwasih, L. and Maulida, Z. (2018) Pengendalian Persediaan Bahan Baku pada PT. Aceh Rubber Industries Kabupaten Aceh Tamiang', *Jurnal Manajemen Dan Keuangan*, 7(2), pp. 157–173.
- Kurnia, D., Bastuti, S. and Istiqomah, B.N. (2018) 'Analisis Pengendalian Bahan Baku Pada Produk Tas Dengan Menggunakan

- Metode Material Requirements Planning (MRP) Untuk Meminimalkan Biaya Penyimpanan Di Home Industry Amel Collection', *Jurnal Ilmiah Teknik dan Manajemen Industri*, 1(1), pp. 22–28.
- Lahu, E.P. and Sumarauw, J.S.. (2017) 'Analysis Of Raw Material Inventory Control To Minimize Inventory Cost On Dunkin Donuts Manado', *Jurnal Riset Ekonomi, Manajemen, Bisnis, dan Akuntansi*, 5(3), pp. 4175–4184.
- Pratama, D.A. et al. (2020) 'Analysis Forecasting Dem & Control of Supply Raw Materialsi In The Sugar Industry (Case Study of PT. XYZ North Lampung)', Jurnal Penelitian Pertanian Terapan, 20(2), pp. 148–160.
- Rachman, R. (2018) 'Penerapan Metode Moving Average dan Exponential Smoothing pada Peramalan Produksi Industri Garment', Jurnal Informatika, 5(1), pp. 211–220.
- Samuel, P. et al. (2020) 'Penentuan Metode Peramalan Permintaan Barang Setengah Jadi Di PT. XYZ', Jurnal Ilmiah Teknik Industri, 8(1), pp. 7–17.
- Susanti, L., Machfud and Hasbullah, R. (2015)
 'Pengendalian Persediaan Bahan Baku Base
 Material Pada Industri Keramik Di PT .
 XYZ', Jurnal Aplikasi Bisnis dan Manajemen,
 1(2), pp. 108–117.
 doi:10.17358/JABM.1.2.108.
- Susmita, A. and Cahyana, B.J. (2018) 'Pemilihan Metode Permintaan Dan Perencanaan Kebutuhan Bahan Baku Dengan Metode MRP Di PT. XYZ', in *Seminar Nasional Sains dan Teknologi*, pp. 1–11.
- Syam, A. (2020) 'Perencanaan Kebutuhan Bahan Baku Di Pabrik Batu Bata PT . Agung Prima Lestari Perbaungan Dengan Metode MRP', in *Seminar Nasional Teknik* (SEMNASTEK) UISU, pp. 174–178.
- Uyun, S.Z., Indrayanto, A. and Kurniasih, R. (2020) 'Analisis Pengendalian Persediaan Bahan Baku Dengan Menggunakan Metode Material Requirement Planning (MRP), *Jurnal Ekonomi, Bisnis dan Akuntansi (JEBA)*, 22(1), pp. 103–113.
- Wardani, A.Y. and Siswanti, D. (2018)
 Penerapan Material Requirement Planning
 (MRP) Guna Perencanaan Persediaan
 Bahan Baku Sanitizer Tissue Pada CV.
 Cool Clean Malang', SINTEKS: Jurnal
 Teknik, 7(1), pp. 1–11.