

Article History:

Submitted August 5, 2024

Revised November 7, 2024

Accepted November 15, 2024

Available online November 16.2024

Journal of Industrial Engineering Management

(Jiem Volume 9. No 3 Tahun 2024)

GAP ANALYSIS AND ENHANCEMENT STRATEGY FOR SUPPLY CHAIN PERFORMANCE IN THE HANDICRAFT INDUSTRY OF ISR BONE SMES: A SCOR RACETRACK APPROACH

Asrul Fole^{1*}, Taufik Immawan², Elisa Kusrini³, Abdul Mail⁴, Muhammad Dahlan⁵, Takdir Alisyahbana⁶, Andi Pawennari⁷, Rahmaniah Malik⁸

¹⁴⁵⁶⁷⁸Department of Industrial Engineering, Faculty of Industrial Technology, Muslim University of Indonesia

²³Master of Industrial Engineering, Faculty of Industrial Technology, Indonesia Islamic University Jl. Urip Sumoharjo KM 5, Makassar, 09321, Sulawesi Selatan¹, Jl. Kaliurang KM 14.5, Sleman, 55584, Yogyakarta

E-mail: asrulfole@umi.ac.id1", taufiq.immawan@uii.ac.id2, elisakusrini@uii.ac.id3, <a href="mailto:abdul.mailto:abdul

ABSTRACT

Supply chain performance is a crucial factor for the handicraft industry in coping with the increasing and complex competition. This study aims to determine the enhancement strategy for the supply chain performance in the handicraft industry of ISR Bone SMEs in the Reliability sector by using the SCOR Racetrack version 12.0 method. This method can assess the gap between actual and target performance on level 1 and level 3 metrics. The results of the study indicate that there is a significant gap in the RL.1.1 Perfect Order Fulfillment metric of 78.63% and in the level 3 metrics: RL.3.32, RL.3.24, and RL.3.55. The proposed enhancement strategies include socialization, promotion, cooperation, fast drying equipment, training on weaving and packaging processes, as well as the use of technology, and scheduling of returned products. This study is expected to contribute to the development of the handicraft industry in Indonesia.

Keywords: Supply Chain Performance, SCOR Racetrack, Reliability, Enhancement Strategy.

DOI: http://dx.doi.org/10.33536/jiem.v9i3.1865

Liscensed by: https://creativecommons.org/licenses/by-nc-sa/4.0/

Published By:

Fakultas Teknologi Industri Universitas Muslim Indonesia

Address:

Jl. Urip Sumoharjo Km. 5 (Kampus II UMI)

Makassar Sulawesi Selatan.

Email:

Jiem@umi.ac.id

Phone:

+6281341717729

+6281247526640

1. INTRODUCTION

The concept of Supply Chain Management (SCM) has become a concern for industry players who realize that cheap, quality and fast products are not enough to maintain the company's survival (Burgess, Sunmola and Wertheim-Heck, 2023). However, the role of suppliers and distributors is a need that cannot be separated from the production process, starting from raw materials from suppliers, processed into semi-finished products, to finished products in the manufacturing process, to distribution to the final consumer, and having quality, namely by following consumer wishes (Vegter, van Hillegersberg and Olthaar, 2023).

Improving supply chain efficiency requires a new perspective on its performance to sustainably maintain a competitive advantage (Sun et al., 2023), so the measurement of overall supply chain performance needs to be carried out (Wagar, Mateen Khan and Othman, 2023). Sustainable growth can be implemented through the simplification of supply chains in the community and is expected to be realized in production and markets centered on traditional handicraft manufacturing methods (Bardhan and Bhattacharya, 2022). A better strategy for developing a business, even for small and medium enterprises (SMEs) (Kilay, Simamora and Putra, 2022); (Iranmanesh et al., 2023). This is because SMEs play an important role in economic growth in developing countries (Gherghina et al., 2020; Zastempowski and Cyfert, 2021). Because SMEs can open job opportunities and support provisions for largescale companies (Rumanti, Rizana and Achmad, 2023); (Idris, Saridakis and Johnstone, 2023).

The contribution of the creative industry in the field of production by 27.0% and the growth in the number of creative industry businesses by 2.1% indicate the existence of obstacles that cause this sector to grow at a low level (Syariah et al., 2021). To be able to develop the industrial sector, especially the handicraft industry sector, optimally and competitively, several supporting factors are needed, such as infrastructure quality, efficient market conditions, high labor productivity, government regulation and

bureaucracy, and good quality access to financing (Kurniawan et al., 2020).

Research on performance measurement to improve competitiveness and business strategy using the Supply Chain Operations Reference (SCOR) 12.0 model approach (Sriwana et al., 2021; Putri and Prabowo, 2023) and AHP weighting has been widely carried out on maketo-order and in Kerudung SMEs with the maketo-stock type (Yusrianafi and Salim Dahda, 2021), performance measurement using the Supply Chain Performance Evaluation method of the Telkom Purwokerto Institute of Technology Library Using the Supply Chain Operational Reference (SCOR) Model Based on Objective Matrix (OMAX) (Mail, Chairany and Fole, 2019; Celina, Kusumawardani and Fathoni, 2022).

ISR Bone is one of the SMEs in Bone districts engaged in the creative industry in the fashion sector that utilizes lontar leaf fiber to make highartistic-value products. The fibers of the lontar leaves are then beaten, or in Bugis, i.e., in reccá, and the fibers are then woven with various materials, such as yarn made of mamelon, copper, silver, and gold. This material is used by ISR Bone to make Songkok Recca products by producing three product qualities, namely standard quality, premium quality, and super quality, which later became one of the Bugis custom icons. Songkok Recca handicraft products penetrate foreign markets besides being popular in the domestic market. The high level of business competition has made competitiveness important in improving delivery performance and maintaining customer loyalty (Raya et al., 2021).

Currently, ISR Bone is faced with problems in carrying out business processes, namely sudden changes in demand that affect changes in the number of product orders to SMEs so that not all products can be fulfilled, defective products are found, the length of time for product delivery is long, and products are returned to SMEs because they do not match the order.

Therefore, research was conducted on improving performance in the Recca songkok craft industry in ISR Bone SMEs using the SCOR

Racetrack model approach version 12.0. This method is explained in 5 steps: pre-SCOR, setting the Scope, configuring the Supply Chain, optimizing the project, and being ready for Implementation (Kusrini *et al.*, 2023). By conducting this research, it is hoped that it will be able to help the Songkok craft industry face competition and achieve a competitive advantage.

2. METHODS

This research was conducted in the Songkok Recca UKM ISR Bone handicraft industry in Bone, South Sulawesi, Indonesia. The focus of the study is to improve the performance of the Songkok Recca craft industry with the SCOR Racetrack model version 12.0.

2.1. Data Type

There are two types of data, namely, primary data and secondary data, namely: The primary data in this study were obtained directly from the object of research through direct observation and interviews with industrial owners and Songkok Recca craftsmen. The primary data needed in this study is Reliability Data from the SCOR 120 model attributes. This study is based on data on order fulfillment or perfect needs carried out by SMEs. Data obtained directly from observations, interviews, and historical data on SMEs Data reliability related to perfect order fulfillment requirements includes request data, timely delivery, timely receipt of orders, product damage data, product quantity and quality verification from suppliers, and product quantity and quality verification from customers. Secondary data is supporting data from primary data, namely data or sources obtained from reading materials. Secondary data in this study were obtained from heritage data from the craft industry, reference books, and other information related to research.

2.2. Data processing and analysis methods

Data processing is carried out by the SCOR Racetrack Method version 12.0, where there are several steps, including:

1. Pre-SCOR Program Steps: The first step in data processing is the preparation of

- objectives for a performance improvement program in the craft industry.
- 2. Set the scope by designing a performance attribute matrix to determine performance attribute metrics that are appropriate to the circumstances in the craft industry.
- 3. Configure the Supply Chain, which is an activity of calculating performance attribute metric data and selecting performance attribute metrics that are a priority in improving and conducting Benchmarks.
- 4. Optimize Project is an analysis of data that has been calculated and benchmarked and chooses which projects are priorities to apply to.
- 5. Ready for Implementation, is the final stage of the SCOR Racetrack before the implementation of the project that has been prepared in the previous stage.

The research design is clearly described and appropriate for the study. The research design could be supported with sufficient and relevant quotations, tables, and diagrams. Data collection tools' purpose, content, and usage are explained and justified.

3. FINDINGS AND DISCUSSION

3.1. Findings

Improving supply chain performance in the Songkok Recca handicraft industry using the SCOR Racetrack 12.0 model gets the results of the handicraft industry supply chain performance based on the value of the Reliability attribute indicator, namely, Perfect Order fulfillment, which has been measured using the SCOR 12.0 model for the resulting Songkok Recca handicraft products (Fole, 2022). The table below shows the results of measuring the supply chain performance of the Songkok Recca handicraft industry using the SCOR 12.0 model.

Table 1. Perfect Order Fulfilment Level 3 Calculation Results

	J		
Matrix Level 1	Matrix Level 2	Matrix Level 3	Percentage (%)
RL.1.1	RL.2.1 % of	RL.3.33	100
Perfect	Orders	Delivery Item	
Order	Delivered in	Accuracy	
Fulfillment	Full	RL.3.35	100
		Delivery	
		Quantity	
		Accuracy	
	RL.2.2	RL.3.32	91,06
	Delivery	Customer	
	Performance to	Commit Date	

Matrix Level 1	Matrix Level 2	Matrix Level 3	Percentage (%)
	Customer Commit Date	Achievement Time	(/*/
		Customer	
		Receiving RL.3.34	100
		Delivery	100
		Location	
		Accuracy	
	RL.2.3	RL.3.31	100
	Documentation	Compliance	
	Accuracy	Documentation	
		Accuracy	
		RL.3.43 Other	100
		Required	
		Documentation	
		Accuracy	
		RL.3.45	100
		Payment	
		Documentation	
		Accuracy RL.3.50	100
			100
		Shipping Documentation	
		Accuracy	
	RL.2.4 Perfect	RL.3.12 % Of	100
	Condition	Faultless	100
		Installations	
		RL.3.24 %	86,77
		Orders/lines	
		received	
		damage free	
		RL.3.41	100
		Orders	
		Delivered	
		Damage-Free	
		Conformance	100
		RL.3.42	100
		Orders Delivered	
		Delivered Defect-Free	
		Conformance	
		RL.3.55	13,23
		Warranty and	13,43
		Returns	
	1	1 Columb	

Based on table 1 above, it can be seen that the results of the SCOR 12.0 calculation for Level 3, namely RL.3.33 and RL.3.34 from 100 incoming orders, can all be completed perfectly by the craft industry for this metric. RL.3.32 of 91.06% This is because the order received does not correspond to the time of the initial agreement. RL.3.34, there were no submission errors during the research, so the craft industry got a perfect score. RL.3.31, RL.3.43, RL.3.45, and RL.3.50 based on interviews with the owner of the craft industry in Recca's Songkok that there were no errors related to 4 matrices with the delivery documents, so the order was considered perfect. RL.3.12 is the percentage of orders that are well related according to the procedure and according to the standards. During the research period, there were no assembly errors in the orders received by the customer. RL.3.41 and RL.3.42. During the study, there were no damaged or defective orders during delivery, so the order was said to be perfect. RL.3.24 is the percentage of orders received by customers in a flawlessly perfect state. The defect that is taken into account in this metric is the defect of the product when it is received by the customer, so if the goods are shipped in perfect condition but there is a defect during delivery, it will be considered a defect. During the study, there were several defective orders received by customers whose performance value was 86.77%. RL.3.55, due to the presence of defective products when received by customers, the defective products are returned with a percentage of performance of 13.23%.

After calculating the metric with the SCOR 12.0 model approach, it is continued with Benchmark. Table 2 shows the Benchmark results as follows:

Table 2. Benchmark Results

Matrix	Actual Average (%)	Target Internal (%)	Gaps
RL.3.33	100	100	0
RL.3.35	100	100	0
RL.3.32	91.06	100	8.94
RL.3.34	100	100	0
RL.3.31	100	100	0
RL.3.43	100	100	0
RL.3.45	100	100	0
RL.3.50	100	100	0
RL.3.12	100	100	0
RL.3.24	86.77	100	13.23
RL.3.41	100	100	0
RL.3.42	100	100	0
RL.3.55	13.23	100	86.77

Based on table 2 above, 10 matrices that do not have gaps, namely RL.3.33, RL.3.35, RL.3.34, RL.3.31, RL.3.43, RL.3.45, RL.3.50, RL.3.12, RL.3.42, and RL.3.41, are considered to have good performance. While the other 3 matrices, namely RL.3.32, RL.3.24, and RL.3.55, still have gaps, they need to be improved (Patak, Branska and Pecinova, 2020).

After it is known that there are gaps that need to be improved, using fishbone analysis, the results are obtained in the table below, namely:

Table 3. Causes of Gaps in Matrices

Matrix	Causes of Gaps
RL.3.32	 *1. Average housewife and farmer worker *2. Products are seasonal *3. Unavailability of fast dryers *4. Lack of interest of workers in the field of weaving
	*5. Lack of control over product shipments *6. Less accurate forecasting *7. No expertise in packaging processes
	*8. Lack of technology-savvy workforce *9. No re-product handling schedule

In table 3 above, it can be seen that there are nine (nine) causes of gaps in the RL. 1.1 Perfect Order Fulfillment Furthermore, making improvements in detail will be explained in the optimization phase of the project.

In this phase, grouping issues are determined to group the matrix based on the process and its problems in Production and have processes in it, including Plan, Source, Make, Deliver, Return, and Enable. Here is a table that contains groupings, namely:

Table 4. Grouping Issues

Group	Plan Source	Make Delivery	Return	Enable
Production	*2. *4.	*1. *3. *5.	*9.	
:	*6. *8	*7.		

Based on table 4 above, after identifying and grouped on each of the causes of gaps by the problems that exist in ISR Bone SMEs, such as projects 2, 4, 6, and 8, projects 1, 3, and 7 are in the planning process, project 5 is in the delivery process, and project 9 is in the return process.

Furthermore, describing the gap in terms of projects to be carried out in the handicraft industry can be seen in the table below:

Table 5. Project list

Project Description	Duration (days)	Matrix
Providing socialization about the importance of product manufacturing in all circles.	7	RL.3.32
Promoting and cooperating with business partners	14	RL.3.32
Provides a fast dryer	30	RL.3.32

Project Description	Duration (days)	Matrix
Provide socialization about the product and weaving process training	14	RL.3.32
Perform product supervision	3	RL.3.24
Perform accurate forecasting	10	RL.3.24
Conduct training on the packaging process	7	RL.3.24
Conducting training for workers on the use of technology	3	RL.3.55
Making a schedule for handling products that are returned to SMEs	7	RL.3.55

Based on table 5 above, it can be seen that nine projects have been determined and have been prepared to enter the implementation stage.

The next stage is Ready for Implementation using a Readiness A check is a checking activity carried out before the implementation of improvements. This activity has five components, namely, Vision, Incentives, Resources, Skills, and an action plan. Based on the nine project lists in the SME handicraft industry, ISR Bone is as follows:

Table 6. Readiness Check Plan Improvements

Project	Vision	Incentive	Resources	Skill	Action Plan	Result
*1	✓	✓	✓	✓	✓	Change
*2	\checkmark	✓	✓	\checkmark	✓	Change
*3	\checkmark	✓	✓	\checkmark	✓	Change
*4	✓	✓	✓	✓	✓	Change
*5	✓	✓	✓	✓	✓	Change
*6	✓	✓	✓	✓	✓	Change
*7	✓	✓	✓	✓	✓	Change
*8	✓	✓	✓	✓	✓	Change
*9	✓	✓	✓	✓	✓	Change

Based on table 6 above, it is explained that in nine of the nine projects that have been proposed, improvements can be made and approved by the handicraft industry.

Prioritizing Matrix is the last stage of Ready for Implementation. Based on the results of the previous analysis, priority improvement will be carried out based on the opinions of ISR Bone SME owners based on effort and risk. The results of the prioritizing matrix analysis can be seen in the following table:

Table 7. Prioritizing Matrix

UKM	ISR Bone	Effort				
	ISIC BOILE	1	2	3	4	5
		*2. *5.	*1. *7.	*3.		
	1 (Low)	*6.	*8. *9.	*4.		
	2					
Risk	3					
	4					
	5 (High)					

Based on table 7 above, it is known that improvement in projects 2, 5, and 6 is the top priority for improvement due to the small value of effort and risk, followed by improvement in projects 1, 7, 8, and 9. Meanwhile, projects 3 and 4 are the last priorities.

To find out the performance results of the proposed project, a prediction of results is carried out. The prediction of results is known using simple mathematical calculations aimed at seeing the extent of the prediction of the effect of the implementation of the proposal on the problem that occurs. The prediction of results, if improvements are made to nine project lists in the ISR Bone SME handicraft industry, can be seen in the following table:

Table 7. Informative Data Summary

Dulanity Ondon				
Priority Order	RL.3.32	RL.3.24	RL.3.55	Total
1	*2.	*5. *6.		3
2	*1.	*7.	*8. *9.	4
3	*3. *4.			2
Total	4	3	2	9
Gap (Capacity)	8,94	13,23	86,77	108,94

Based on the informative data summary above, a simple calculation can then be carried out, the results of which can be used to predict changes that will occur if the proposed solution is implemented. Below is a calculation of these predictions:

Priority 1
P1 =
$$\left(\frac{86,77}{108,94}\right)$$
 x 100 %
= 79,6%

Priority 2
$$P2 = \left(\frac{8,94}{108,94} + \frac{\frac{13,23}{3}}{108,94}\right) \times 100\%$$

$$= 12,2 \%$$
Priority 3
$$P3 = \frac{8,94}{108,94} \times 100 \%$$

$$= 8,2 \%$$

$$X = P1 + P2 + P3$$

$$= 79,6 + 12,2 + 8,2$$

$$= 100\%$$

Description X = Change in the gap to the internal target

Based on the calculations above, it can be seen that if the implementation of the proposed priority 1 is carried out, it can have a change impact of 79.6% on the internal target, while priority 2 is 12.2% and priority 3 is 8.2%. If the overall priorities are implemented, the impact of the change is 100%, which means achieving the internal target of meeting the demand capacity of 2410 pcs in 11 months (Fole, 2022).

3.2. Discussion

Based on priority 1, the improvement in the first stage that needs to be done is to provide socialization about the importance of making Recca songkok products in all circles by showing the general public that the craftsmen carried out by several handicraft industries on the island of Java are mostly done by men as well (Charina et al., 2022), and by displaying the level of sales generated from Songkok Recca products, it can attract customers from within the country as well as from foreign countries (Raya et al., 2021).

At this stage, we carry out promotions and collaboration with business partners by improving communication, improving product quality and services, presenting new products that can attract buyers' interest, and utilizing social media platforms (Laily *et al.*, 2022). So that it can provide insight into the craft industry in expanding its business to the next level.

The next stage is to be able to provide a dryer that can facilitate the drying process on the ejection fibers because, in the rainy season, the dryer process takes as much as 7 days just to be ready to use, while on normal days it takes as much as 3–4 days. By providing tools such as the dryers used in the bamboo drying process and so on (Lee *et al.*, 2021), simple ones can be used; all of them are hair dryers.

The last stage of the priority is to hold training for workers and residents by presenting experts or seniors in the field of weaving a bunch of recca so that the process of implementation in weaving can be improved with an estimate of the process of completing the weaving process products from experts (Elidemir, Ozturen and Bayighomog, 2020), one day can produce 2 products, and the fewer experts as many as 1 product, and beginners usually only make patterns.

Based on priority 2, that improvement at this stage is to supervise the products sent both in terms of packaging and delivery services and to capture customer behavior in receiving the delivered products, as seen from the supervision carried out at this time only based on the market place application that can be monitored (Martins et al., 2020), but some customers buy only using friends or family in order but when making complaints cannot be done, finally getting a bad image. For the time being, the SME must inform the customer that the product will be delivered according to schedule; in case of delay, it will be informed by providing workers who handle the process (Dey et al., 2021).

The next stage is looking for experts in the field of forecasting and planning so that they can predict the raw materials needed to meet demand and the number of workers who will meet the demand, either in a lack of demand or in excess demand. Forecasting also functions in the production system of a handicraft industry or company to improve its production system or handle customer requests (Teo *et al.*, 2020).

In the last stage, the second priority is to provide training to workers in the field of packaging so that the products packed by workers cannot affect the product when unwanted things happen to the shipping process. This process can also provide added value to the handicraft industry (Shafi *et al.*, 2021), both in terms of customer satisfaction with products that are received safely and in terms of creative value in terms of product packaging.

Based on stage 3, the improvement at this stage is to train workers on the use of modern technology so that when customers reward or return products due to defects, they get a quick response (Sun & Liu, 2022). Currently, only one person handles the process, but in the field of marketing, there must also be prepared workers who handle the work separately so that it can be handled quickly.

The final stage of the third priority is the creation of a schedule for the person in charge of the re-product confectionery process and defects (Gajšek, Stradovnik and Hace, 2020). This is necessary because, in the previous activities, the selection of the person in charge was the only objective, so sometimes some products have been done for a long time (Zhang *et al.*, 2021). With the person in charge, the handling of returned or defective products can be done quickly to make a good impression on the handicraft industry (Sumantri and Faisal, 2023).

The proposal is to increase the productivity and performance of the ISR Bone SME handicraft industry, and the proposal can make the handicraft industry meet the demand perfectly.

4. CONCLUSION AND SUGGESTION

Based on the results of the supply chain performance evaluation above, conclusions can be drawn, namely, that the performance attributes that need to be improved or improved based on the SCOR Racetrack model version 12.0 in ISR Bone SMEs are in the Reliability attribute with a performance matrix at a level I, namely RL.1.1 Perfect Order Fulfillment; Level 2: RL.2.2 Delivery Performance to Customer Commit Date; and RL.2.4 Perfect Condition; and Level 3, namely RL.3.32 Customer Commit Date Achievement Time Customer Receiving, RL.3.24 %Orders/lines received damage-free RL.3.55 Warranty and Returns As well as the proposed improvements that need to be made to the ISR Bone SME handicraft industry, namely by priority 1, namely providing socialization about the importance of product manufacturing in all circles, promotion, and cooperation with business partners, providing fast drying tools, product socialization, and weaving process

training. The second priority is controlling products, accurate forecasting, and training in the packaging process. The third priority is to conduct training for workers on the use of technology and the creation of schedules for the returned products.

Based on the previous conclusions, researchers can provide advice for the handicraft industry; the advice that has been given should be applied to increase productivity and employee performance; and they can provide customer satisfaction with the availability of products ordered as agreed and no defective products by increasing good packaging activities, and the next research is to further deepen the conditions that occur in SMEs under the SCOR Racetrack Method Version 12.0 so that problems occur and more specific information is available. Such as in the performance of Responsiveness, Agility, Cost, and Asset Management Efficiency.

ACKNOLEDGEMENT

The author would like to express his deepest gratitude to UKM ISR Bone for the support and opportunity to conduct this research. The author would also like to thank the Industrial Engineering Master Program of the Islamic University of Indonesia for providing the opportunity to conduct this research. The author would like to thank the guidance and dedication of the supervising lecturer. Finally, the author would like to thank the invaluable assistance from colleagues in completing this research, which has provided valuable insights into gap analysis and strategies improving for supply chain performance in the craft industry.

References

- Bardhan, A. and Bhattacharya, A. (2022) 'Role of Traditional Crafts in Sustainable Development and Building Community Resilience: Case Stories from India', *Culture. Society. Economy. Politics*, 2(1), pp. 38–50. Available at: https://doi.org/10.2478/csep-2022-0004.
- Burgess, P.R., Sunmola, F.T. and Wertheim-Heck, S. (2023) 'A review of supply chain quality management practices in sustainable food networks', *Heliyon*. Elsevier Ltd, pp. 1–25. Available at:

- https://doi.org/10.1016/j.heliyon.2023.e 21179.
- Celina, J.S., Kusumawardani, D.M. and Fathoni, M.Y. (2022) 'Evaluasi Kinerja Rantai Pasok Perpustakaan Institut Teknologi Telkom Purwokerto Menggunakan Supply Chain Operational Reference (SCOR) Model Berbasis Objective Matrix (OMAX)', JURIKOM (Jurnal Riset Komputer), 9(2), pp. 296–304. Available at: https://doi.org/10.30865/jurikom.v9i2.4 014.
- Charina, A. et al. (2022) 'Sustainable Education and Open Innovation for Small Industry Sustainability Post COVID-19 Pandemic in Indonesia', Journal of Open Innovation: Technology, Market, and Complexity, 8(4), pp. 1–21. Available at: https://doi.org/10.3390/joitmc8040215.
- Dey, B.K. et al. (2021) 'Autonomation policy to control work-in-process inventory in a smart production system', *International Journal of Production Research*, 59(4), pp. 1258–1280. Available at: https://doi.org/10.1080/00207543.2020. 1722325.
- Elidemir, S.N., Ozturen, A. and Bayighomog, S.W. (2020) Innovative behaviors. employee creativity, and sustainable competitive advantage: A moderated mediation', Sustainability (Switzerland), 12(8),pp. 1-18.Available https://doi.org/10.3390/SU12083295.
- Fole, A. (2022) Peningkatan Kinerja Pada Industri Kerajinan Songko Recaa (Studi Kasus: UKM ISR Bone). Yogyakarta. Available at: https://dspace.uii.ac.id/handle/12345678 9/39404 (Accessed: 6 August 2024).
- Gajšek, B., Stradovnik, S. and Hace, A. (2020) 'Sustainable move towards flexible, robotic, human-involving workplace', Sustainability (Switzerland), 12(16), pp. 1–16. Available at: https://doi.org/10.3390/su12166590.
- Gherghina, S.C. et al. (2020) 'Small and mediumsized enterprises (SMEs): The engine of

- economic growth through investments and innovation', *Sustainability (Switzerland)*, 12(1), pp. 1–22. Available at: https://doi.org/10.3390/SU12010347.
- Idris, B., Saridakis, G. and Johnstone, S. (2023) 'Training and performance in SMEs: Empirical evidence from large-scale data from the UK', *Journal of Small Business Management*, 61(2), pp. 769–801. Available at: https://doi.org/10.1080/00472778.2020. 1816431.
- Iranmanesh, M. et al. (2023) 'Effects of supply chain transparency, alignment, adaptability, and agility on blockchain adoption in supply chain among SMEs', Computers and Industrial Engineering, 176(108931), pp. 1–12. Available at: https://doi.org/10.1016/j.cie.2022.108931.
- Kilay, A.L., Simamora, B.H. and Putra, D.P. (2022) 'The Influence of E-Payment and E-Commerce Services on Supply Chain Performance: Implications of Open Innovation and Solutions for the Digitalization of Micro, Small, and Medium Enterprises (MSMEs) in Indonesia', Journal of Open Innovation: Technology, Market, and Complexity, 8(3), pp. 1–25. Available at: https://doi.org/10.3390/joitmc8030119.
- Kurniawan, P. et al. (2020) 'From knowledge sharing to quality performance: The role of absorptive capacity, ambidexterity and innovation capability in creative industry', Management Science Letters, 10(2), pp. 433–442. Available at: https://doi.org/10.5267/j.msl.2019.8.027
- Kusrini, E. et al. (2023) 'SCOR Racetrack to Improve Supply Chain Performance', Mathematical Modelling of Engineering Problems, 10(3), pp. 915–920. Available at: https://doi.org/10.18280/mmep.100322.
- Laily, N. et al. (2022) 'Media Sosial Sebagai Sarana Peningkatan Penjualan UMKM Kerajinan Di Gresik', SHARE 'SHaring - Action -

- REflection', 8(1), pp. 43–48. Available at: https://doi.org/10.9744/share.8.1.43-48.
- Lee, B. *et al.* (2021) 'Assessing sustainable bamboo-based income generation using a value chain approach: Case study of nongboua village in Lao PDR', *Forests*, 12(2), pp. 1–21. Available at: https://doi.org/10.3390/f12020153.
- Mail, A., Chairany, N. and Fole, A. (2019) Evaluation of Supply Chain Performance through Integration of Hierarchical Based Measurement System and Traffic Light System: A Case Study Approach to Iron Sheet Factory, *Int. J Sup. Chain. Mgt, Vol, 8(5), 79-85.* Makassar. Available at: https://doi.org/10.59160/ijscm.v8i5.258 4.
- Martins, N. *et al.* (2020) 'E-marketplace as a tool for the revitalization of portuguese craft industry: The design process in the development of an online platform', *Future Internet*, 12(11), pp. 1–23. Available at: https://doi.org/10.3390/fi12110195.
- Patak, M., Branska, L. and Pecinova, Z. (2020) 'Perfect order and its components: Application for deliveries of fast moving consumer goods to retail stores', Engineering Economics, 31(2), pp. 233–242. Available at: https://doi.org/10.5755/j01.ee.31.2.2248 0.
- Putri, A.S. and Prabowo, W.A. (2023) Supply Chain Performance Measurement Using SCOR 12.0 In Sport Shoes Company, Jurnal Ilmiah Teknik Industri. Jakarta Barat. Available at: https://doi.org/10.24912/jitiuntar.v11i1. 21056.
- Raya, A.B. *et al.* (2021) 'Challenges, open innovation, and engagement theory at craft smes: Evidence from Indonesian batik', *Journal of Open Innovation: Technology, Market, and Complexity*, 7(2), pp. 1–24. Available at: https://doi.org/10.3390/joitmc7020121.
- Rumanti, A.A., Rizana, A.F. and Achmad, F. (2023) 'Exploring the role of

- organizational creativity and open innovation in enhancing SMEs performance', Journal of Open Innovation: Technology, Market, and Complexity, 9(2), pp. 1–15. Available at: https://doi.org/10.1016/j.joitmc.2023.10 0045.
- Shafi, M. et al. (2021) 'Factors Influencing the Consumer Acceptance of Innovation in Handicraft Products', SAGE Open, 11(4), pp. 1–17. Available at: https://doi.org/10.1177/2158244021106 1528.
- Sriwana, I.K. et al. (2021) 'Pengukuran Kinerja Rantai Pasok Menggunakan Supply Chain Operations Reference (SCOR) Di UD. Ananda', JISI: Jurnal Integrasi Sistem Industri, 8(2), pp. 13–24. Available at: https://doi.org/10.24853/jisi.8.2.13-24.
- Sumantri, D.S. and Faisal, M. (2023) 'Pengembangan Dan Pola Pembinaan Industri Kreatif "Songkok Recca" Desa Paccing Kabupaten Bone', *Jurnal Harmoni*, 13(2), pp. 175–198. Available at: https://doi.org/10.26618/jh.v13i2.12605.
- Sun, X. et al. (2023) 'Exploring the potential for improving material utilization efficiency to secure lithium supply for China's battery supply chain', Fundamental Research, 4(1), pp. 167–177. Available at: https://doi.org/10.1016/j.fmre.2022.12.0 08.
- Sun, Y. and Liu, X. (2022) 'How Design Technology Improves the Sustainability of Intangible Cultural Heritage Products: A Practical Study on Bamboo Basketry Craft', Sustainability (Switzerland), 14(19), pp. 1–20. Available at: https://doi.org/10.3390/su141912058.
- Syariah, J.E. et al. (2021) 'AL-IQTISHADIYAH Analisis Kontribusi Subsektor Industri Kreatif Terhadap Produk Domestik Bruto (PDB) di Tulungagung', *Jurnal Ekonomi Syariah dan Hukum Ekonomi Syariah*, 7(1), pp. 17–35. Available at: https://doi.org/10.31602/iqt.v7i1.4035.

- Teo, P.-C. et al. (2020) 'Analysis on Competitiveness of the Handicrafts Industry: A Case of Sri Lanka', International Journal of Academic Research in Business and Social Sciences, 10(6), pp. 146–163. Available at: https://doi.org/10.6007/ijarbss/v10-i6/7275.
- Vegter, D., van Hillegersberg, J. and Olthaar, M. (2023) 'Performance measurement system for circular supply chain management', *Sustainable Production and Consumption*, 36, pp. 171–183. Available at: https://doi.org/10.1016/j.spc.2023.01.00 3.
- Waqar, A., Mateen Khan, A. and Othman, I. (2023) 'Blockchain empowerment in construction supply chains: Enhancing efficiency and sustainability for an infrastructure development', *Journal of Infrastructure Intelligence and Resilience*, 3(1), p. 100065. Available at: https://doi.org/10.1016/j.iintel.2023.100 065.
- Yusrianafi, N. and Salim Dahda, S. (2021)
 'Pengukuran Kinerja Pada UKM
 Kerudung Menggunakan Metode Supply
 Chain Operator Reference (SCOR) Dan
 AHP', Jurnal Ilmiah Mahasiswa Teknik
 Industri Universitas Kadiri, 3(2), pp. 131–146.
 Available at:
 https://doi.org/10.30737/jurmatis.v3i2.1
 774.g1659.
- Zastempowski, M. and Cyfert, S. (2021) 'Social responsibility of SMEs from the perspective of their innovativeness: Evidence from Poland', *Journal of Cleaner Production*, 317(128400), pp. 1–14. Available at: https://doi.org/10.1016/j.jclepro.2021.1 28400.
- Zhang, X. et al. (2021) 'The construction of placeness in traditional handicraft heritage sites: A case study of suzhou embroidery', Sustainability (Switzerland), 13(16), pp. 1–24. Available at: https://doi.org/10.3390/su13169176.