

Studi Pemodelan Empirik *Peak Particel Velocity* (*Ppv*) Tambang Bawah Tanah PT Freeport Indonesia

Supardi Razak^{1*}, Dewi Ayu Kusumaningsih², Ahmad Fauzan Haryono³

Universitas Islam Negeri Syarif Hidayatullah Jakarta, Indonesia *Email: <u>supardi.razak@uinjkt.ac.id</u>

SARI

PT Freeport Indonesia (PTFI) sedang melakukan aktivitas penambangan deposit tembaga dan emas di Papua, Indonesia. Salah satu lokasi penambangan yang perlu mendapat perhatian perusahaan adalah tambang bawah tanah *Deep Mill Level Zone* (DMLZ) khususnya pada aktivitas peledakan level undercut. Pada kegiatan peledakan terdapat bagian energi yang melewati massa batuan berupa getaran. Getaran tanah dapat mempengaruhi stabilitas lubang bukaan dan dapat menyebabkan keruntuhan. Dalam penelitian ini data getaran tanah yang diperoleh dari pengukuran lapangan dihitung untuk mendapatkan *Peak Particle Velocity* (PPV). Dari data pengukuran getaran tanah dari tanggal 30 maret 2019 sampai 07 mei 2019 dilakukan analisa menggunakan metode regresi non linier model geometrik *(regresi power)* dan perbandingan antara nilai *scaled distance* (SD) dan *peak particle velocity* (PPV) yang didapatkan secara aktual. Analisis regresi *power* menghasilkan sebuah persamaan untuk memprediksi nilai PPV yaitu USBM (Duvall & Fogelson, 1962) PPV = 934.24(SD)^{-1.116}, Langefors and Kihlstrom PPV = 553.53(SD)^{-1.08}, Ambraseys-Hendron, PPV = 2654.9(SD)^{-1.149}.

Kata kunci: Getaran Tanah, Peak Paticle Velocity (PPV), Scaled Distance (SD).

+6281241908133

How to Cite: Razak, S., Kusumaningsih, D.A., Haryono, A.F., 2023. Studi Pemodelan Empirik *Peak Particel Velocity* (*Ppv*) Tambang Bawah Tanah PT Freeport Indonesia. Jurnal Geomine, 11 (2): 121 - 133

Published By:	Antiala Uistour.
Fakultas Teknologi Industri	Article History.
Universitas Muslim Indonesia	Bosoived in from
Address:	Acconted
Jl. Urip Sumoharjo Km. 05	Available online
Makassar, Sulawesi Selatan	Lisensec By:
Email:	Creative Commons Attribution-ShareAlike 4.0 International License.
<u>geomine@umi.ac.id</u>	
Phone:	
+6285299961257	

ABSTRACT

PT Freeport Indonesia (PTFI) is mining copper and gold deposits in Papua, Indonesia. One of the mining locations that needs the company's attention is the Deep Mill Level Zone (DMLZ) underground mine, especially in undercut level blasting activities. In blasting activities, there is a part of the energy that passes through the rock mass in the form of vibration. Ground vibration can affect the stability of the opening hole and can cause collapse. In this study soil vibration data obtained from field measurements were calculated to obtain Peak Particle Velocity (PPV). From soil vibration measurement data from March 30, 2019 to May 7, 2019, analysis was carried out using the geometric model non-linear regression method (power regression) and a comparison between the scaled distance (SD) and peak particle velocity (PPV) values obtained actually. Power regression analysis produces an equation to predict PPV values, Copyright © 2018, Jurnal Geomine, Page: 121

namely USBM (Duvall &; Fogelson, 1962) PPV = 934.24(SD)-1.116, Langefors and Kihlstrom PPV = 553.53(SD)-1.08, Ambraseys-Hendron, PPV = 2654.9(SD)-1.149.

Keyword: Ground Vibration, Peak Velocity (PPV), Scaled Distance (SD) PENDAHULUAN

Dalam sistem pertambangan bawah tanah, peledakan merupakan salah satu cara untuk kegiatan pengembangan dan produksi. Peledakan dilakukan ketika alat mekanis tidak lagi memungkinkan untuk memecahkan batu dalam kondisi alami. Selama peledakan, tidak seluruh energi yang dihasilkan digunakan untuk memecah batuan, namun sebagian energi ditransmisikan sebagai gelombang ke massa batuan yang merambat di dalam massa batuan. Ada sekitar 5 % - 20 % energi ledak disalurkan sebagai energi gelombang seismik, 10 % - 20 % sebagai kinetic pendorong fragmentasi, 20 % - 40 % untuk pengerusan batuan, dan hanya 0,1 % - 2 % saja energi ledak yang dipakai untuk fragmentasi batuan sedangkan sisanya hilang melalui rekahan-rekahan (Finn *et al.* 2004, Parida dan Mishra, 2015). Gelombang yang ditimbulkan akibat peledakan dipersepsikan sebagai getaran yang dapat mengganggu keselamatan dan kenyamanan manusia sampai tingkat getaran tertentu.

Dampak negatif peledakan pada tambang bawah tanah yang dilakukan pada produksi atau pembukaan lubang akses tambang, getaran tanah dapat merusak dan meruntuhkan dinding serta atap lubang akses tambang atau terjadi keruntuhan total akibat ambrukan batuang (Snodgrass and Siskind, 1974), Singh and Xavier, 2005).

Besar getran tanah akibat aktivitas peledakan dapat diketahui dengan cara diukur menggunakan sismografi. Hingga saat ini kita dapat menggunakan teori hukum *Scale Distance* (SD) untuk menghitung secara teoritis nilai getaran tanah. Namun masih terus dikembangkan untuk menyelesaikan efek samping atau dampak yang merugikan lingkungan berdasarkan sekumpulan data hasil pengukuran getaran tanah dipermukaaan. Hukum *Scale Distance* (SD) adalah suatu metode empiris yang menyatakan bahwa besarnya getaran tanah merupakan fungsi dari keadaan massa batuan, berat bahan peledak dan jarak antara titik peledakan (pantau) getaran dengan pusat ledakan. Keadan massa batuan yang dapat mempengaruhi propogasi getaran terutama adalah kepadatan, kekuatan, densitas, intensitas rekahan, dan air tanah. Peladakan pada batuan yang padat, keras dan berdensitas tinggi akan menghasilkan getaran yang lebih kuat serta menjadi media yang sangat baik untuk mengaliri propagasi gelombang seismik lebih jauh dibandingkan dengan peledakan pada batuan yang lebih lunak.

METODE PENELITIAN

Sebuah penelitian dilakukan untuk mendapatkan suatu jawaban atas dugaan bahwa model persamaan empiris peledakan yang umum digunakan dalam menganalisi suatu getaran peledakan di pertambangan saat ini tidak dapat diterapkan begitu saja untuk menganalisis getaran peledakan di tambang bawah tanah.

Metode Pengambilan Sampel dan Data.

Metode pengambilan sampel atau data-data pada penelitian ini terdapat dua kelompok yang menjadi objek penelitian, yaitu observasi geologi dan pengambilan sampel batuan serta pengamatan peledakan dan pengukuran getran ledakan. Data yang diperlukan dari setiap objek penelitian berupa variable terukur dari setiap objek penelitian yang memiliki interaksi dan interrelasi antar variable serta dapat menjawab masalah respon massa batuan terhadap getaran peledakan.

Observasi geologi dan pengambilan sampel batuan.

Kekuatan dan keadaan batuan merupakan parameter yang mempengaruhi stabilitas lubang akses, terutama karena dampak getran peledakan. Kekuatan sebuah batuan dapat diketahui dari kekerasan, kuat tekan uniaksial atau densitas, dan untuk keadaan batuan yang dapat mempengaruhi getaran peledakan antara lain keberadaan joint dan struktur geologi lainnya, sifat fisik batuan keras atau lunak dan kehadiran air tanah. Untuk mendapatkan gambaran kuantitatif tentang kekuatan massa batuan maka perlu dilakukan pengujian sampel di laboratorium mekanika batuan. Uji laboratorium yang dilakukan adalah uji sifat fisik (bobot isi, porositas, dan kadar air), uji triaksial (kohesi, sudut geser dalam puncak), uji kuat tekan (kuat geser, sudut geser dalam puncak dan sisa) dan uji geser langsung.

Pengukuran getaran peledakan.

Dampak getaran peledakan sangat mempengaruhi kestabilan lubang akses yang sudah terbuka karena adanya induksi peledakan pada dinding lubang akses tersebut akibat propagasi gelombang seismik. Oleh sebab itu dilakukan Pengukuran getaran peledakan pada *roof, sidewall* dan *floor* untuk mengetahui berapa besar nilai getaran yang terjadi di setiap aktivitas peledakan. Pengukuran dilakukan sebanyak 30 kali pengukuran dengan jarak tertentu untuk mendapatkan data pengukuran yang baik.

Variabel Yang Dipakai

Parameter yang digunakan dalam penelitian ini terdiri dari, *Rock Mass Rating* (RMR), Kuat tekan batuan utuh, *Rock Quality Designation* (*RQD*), Jarak antar (spasi) kekar, Kondisi kekar, Kondisi air tanah. Dan untuk data Pengukuran getran peledakan yaikni *Peak Particle Velocity (PPV)* Jumlah muatan bahan peledak dan Jarak pengukuran getaran peledakan yang dilakukan.

Metode Penyajian Data

Berdasarkan hasil penelitian, data disajikan dalam bentuk tabel dan grafik. Data yang dihasilkan dalam bentuk tabel adalah data PPV, jumlah bahan peledak jarak pengukuran getaran tanah, RMR. Adapun untuk analisa data yakni dari data yang telah dikumpulkan, kemudian akan dianalisa/diolah sesuai dengan metode yang akan digunakan. Pada riset ini menggunakan 2 metode untuk menganalisa pemodelan empirik ppv di tambang bawah tanah. Berikut 2 metode analisa yang digunakan yaitu, secara Empirik terdiri dari Penilaian kualitas massa batuan yang ada dilokasi penelitian, Karakteristik bidan diskontiniu., Data hasil pengukuran gelombang getaran di lapangan yaitu PPV.

Hukum Scaled Distance

Scaled Distance dengan persamaan.

Skala Jarak (SD) merupakan parameter pengukuran jarak. Jarak Skala dinyatakan sebagai perbandingan jarak dan besaran bahan peledak, yang mempengaruhi getaran dan energi hasil ledakan di udara.

$SD = R/Q^{1/3}$	(1)
Dimana :	

R = Jarak pusat peledakan terhadap titik pengamatan (m)

W = Maksimum bahan peledak *per delay* (kg)

Dengan penentuan *scaled distance*, kita dapat menentukan adanya getaran. PPV (Peak Particle Velocity) dimana kecepatan maksimum batu bergerak dari posisi semula. Banyak rumus yang digunakan untuk menentukan hal ini, salah satunya dengan menggunakan USBM.

$$PPV = K(SD)^{-b} atau PPV = K\left(\frac{R}{\alpha^{1/2}}\right)^{-b}$$
....(2)

Dimana:

PPV = Peak particle velocity (mm/s),

R = Jarak antara lokasi peledakan dan alat *monitoring* (m)

Q = Total berat bahan peledak per minimum *delay* (kg)

K,b = Konstanta batuan,

SD = Square Root Scale distance untuk isian lubang ledak (m/kg^0,5)

Selain itu, ada prediksi berdasarkan Langefors and Kihlstrom (1963).

$$PPV = K \left(\sqrt{\left(\frac{Q}{R^{2/3}}\right)} \right)^b \dots$$
(3)

Prediksi yang ketiga adalah menggunakan Ambraseys-Hendron (1968) dimana.

Copyright © 2018, Jurnal (Appmine, Page: 124

 $PPV = K \left(\frac{R}{0^{\frac{1}{3}}}\right)^{-b}.$

Analisa Scaled Distance Yang Disesuaikan.

Aturan skala jarak menunjukkan kondisi di mana peledakan tidak dapat dilakukan. Memulihkan rumus skala jarak diperlukan ketika nilai skala jarak tidak lagi memenuhi kebutuhan operasional. Pemasangan ini didasarkan pada prinsip bahwa tingkat getaran yang ditimbulkan selalu dalam batas aman. Pernyataan di atas dapat dan harus dibuktikan dengan pengukuran getaran. Dengan mencapai rasio tersebut, kita mempersiapkan jumlah bahan peledak yang dapat meledak pada jarak tertentu selama waktu tunda, sehingga kecepatan maksimum partikel tidak melebihi nilai yang diinginkan. Metode yang digunakan untuk menentukan nilai jarak berskala adalah: *Particle Velocity vs Scaled Distance*.

HASIL PENELITIAN

Lokasi Peledakan

Lokasi penelitian dilakukan ditambang bawah tanah DMLZ, tepatnya di level *undercut*. Lokasi level *undercut* sendiri berada diketinggian 2600 mdpl. Berikut detail lokasi penelitian yang dilakukan.

Tanggal	Lokasi	Jumlah Ring
Peledakan	Peledakan	8
30 Maret 2019	DD14E	1 Ring (Ring 96)
04 April 2019	DD11E	1 Ring (Ring 106)
12 April 2019	DD14W	1 Ring (Ring 102)
12 April 2019	DD13W	1 Ring (Ring 89)
15 April 2019	DD15W	1 Ring (Ring 116)
18-April-2019	DD14E	2 Ring (Ring 97, 98)
18-April-2019	DD16E	2 Ring (Ring 121, 122)
25 April 2019	DD16W	4 Ring (Ring 132, 133, 134, 135)
27-April-2019	DD13W	2 Ring (Ring 90, 91)
27-April-2019	DD15E	2 Ring (Ring 110, 111)
30 April 2019	DD15W	2 Ring (Ring 117, 118)
07 Mei 2019	DD15W	2 Ring (Ring 119, 200)
07 Mei 2019	DD14E	2 Ring (Ring 99, 100)

Tabel 1. Lokasi Pengambilan Data Peledakan

Peledakan Undercut DMLZ.

Blasting pada tahap undercut berbeda dengan blasting pada tahap pengembangan. Blasting di undercut telah masuk ke tahap produksi, dimana tujuan dari Blasting undercut adalah untuk memecahkan batuan dan menjatuhkan batuan ke permukaan penambangan melalui pemotongan bijih dan menghilangkan tegangan sehingga tegangan tersebut tidak menumpuk pada drawpoint. Pola Blasting undercut menggunakan pola kipas dimana arah lubang blasting berbentuk vertikal berbentuk kipas atau beraturan. Tujuan dari pola ini adalah untuk

Copyright © 2018, Jurnal Geomine, Page: 125

memecah batuan di sekitar pilar utama sehingga jatuh ke arah *ore pas* run atau *mayor pilar* dan batuan tersebut dapat terangkut melalui level penambangan. Geometri ledakan yang digunakan dalam operasi pelepasan ditunjukkan (Tabel 2).

Tabel 2. Geometri Peledakan Aktual di Undercut Ring, (Sumber Drillpaten PTFI)					
Geometri Peledaka	n				
Diameter lubang (ø)	3.5" (89 mm)				
Jumlah lubang	9 lubang dalam 1 ring				
Sudut lubang yang lebih panjang (membentuk puncak utama)	600				
Sudut lubang terpendek (di atas drawbell)	320				
Jarak lubang untuk ring undercut regular	2.4 m				
Tonase per rings	850 ton/rings. Asumsi Density 3.0				
Densiti bahan peledak	0.85 gr/cc				
Radius ledakan	1.5 m				

Geometri peledakan ini dijadikan acuan untuk desain peledakan di undercut. Dapat dilihat pada (Gambar 1) memiliki kedalaman lubang yang berbeda. Kedalaman lubang ledakan di tiang utama lebih dari 10 meter. Sebuah lubang ledakan menggunakan lebih dari satu bahan peledak atau primer, dan penempatan setiap primer didasarkan pada sepertiga kedalaman lubang ledakan. Bahan peledak pertama terletak di ujung lubang ledakan, dan bahan peledak kedua terletak di tengah lubang.

Gambar 1. Desain Peledakan di Undercut, (Sumber: Cave Management PTFI)

Dengan peledakan desain *fan blast* di atas, strategi penerapan di *underproduction* DMLZ adalah dengan menggunakan *advanced undercut*. Tujuan dari penggunaan strategi ini adalah untuk mengarahkan tegangan tumpuan ke kolom yang lebih besar, sehingga meminimalkan kerugian dan penggunaan tumpuan tanah. Selain itu, pemilihan nomor *delay* setiap lubang ledak juga harus disesuaikan agar batuan dapat dipecah sesuai keinginan. Hal ini juga untuk mengendalikan aliran gelombang yang dihasilkan saat peledakan. Nomor penundaan yang digunakan ditunjukkan (Gambar 2) di bawah ini.

Gambar 2. Waktu tunda yang digunakan di setiap lubang dalam satu ring, (Sumber: Cave Management PTFI)

Pemilihan Waktu tunda di atas sering digunakan untuk melakukan pre-load lubang ledakan, yang merupakan jenis peledakan standar. Sebuah jumper ditambahkan ke ledakan massal menggunakan i-kon detonator di antara ring lubang ledak untuk mengurangi waktu tunda setiap lubang ledakan (Gambar 3).

Gambar 3. Penggunaan I-kon Detonator di Setiap Ring, (Sumber: Cave Management PTFI)

Jenis Bahan Peledak dan Aksesoris yang digunakan.

Bahan peledak yang digunakan untuk meledakkan *Undercut Ring* adalah *Ammonium Nitrate Emulsion* berdiameter 45 mm. Sifat-sifat bahan peledak diberikan pada Tabel IV.9. Sedangkan aksesoris peledakan yang digunakan di adalah i-kon™ II eletronic detonator, i-kon II Logger, dan kabel *duplex darness wire*.

Tabel 3. Karakteristik Ammonium Nitrate Emulsion,	(Sumber: MMK Or	rica PTFI)
Diameter (mm)	45	
Density (g/cm3)	> 0,55	
Relative Weight Strength (RWS)	54	
Relative Bulk Strength (RBS)	37	
VOD(lrm/c)	3.0 -	
VOD (KIII/S)	6.2	

Copyright © 2018, Jurnal Geomine, Page: 127

Data Aktual Peak Particle Velocity.

Pengukuran getaran peledakan pada *undercut* dan untuk mendapatkan nilai *peak particle velocity* harus menggunakan alat *monitoring*. Alat *monitoring* yang digunakan adalah *ShotTrack ViB Monitor* (Gambar 4). Alat ini dapat menangkap 3 gelombang, yaitu gelombang P, gelombang S vertikal dan horizontal dengan frekuensi tertentu. Jarak dari area peledakan dengan alat pemantau dan nilai *Peak Vector Sum* (PVS) diperoleh dengan mengukur getaran ledakan.

Gambar 4. Alat Monitoring PPV, (Sumber: PT.FI)

Penelitian yang dilakukan menggunakan data PPV. Berdasarkan lokasi yang diteliti, didapat nilai PPV yang ditunjukkan pada Tabel 4 di bawah ini.

Tabel 4.	Rangkuman	Hasil	Pengukuran	Peledakan	Pada	Undercut	Ring	Caving	Undergra	ound
	DMLZ Mine	L2600	١							

No.	Tanggal	Lokasi	Alat	Jarak (R)	Q (rm)	Longitudinal	Transversal	Vertikal	PVS (mm/a)
1		DD14E	ViP-500-000	20	67	166.46	335.00	164.46	409.65
1	20 3 5+ 0010	DD14E	VIB-000-009	20	67	115.00	000.65	104.40	408.00
2	50-Maret-2019	DD14E	V1B-200-009	50	07	115.09	220.00	98.01	207.00
3		DD14E	V1B-25-005	40	67	86.48	155.05	149.92	232.37
4	04-April-2019	DD11E	ViB-500-009	30	87	130.40	141.44	102.56	218.01
5	04110110 2010	DD11E	ViB-200-011	40	87	120.09	93.98	90.74	177.45
6	19-April-9010	DD14W	ViB-25-005	40	70	69.90	59.56	56.77	107.96
7	12-April-2019	DD13W	ViB-25-007	40	56	68.84	62.76	56.69	109.05
8		DD15W	ViB-500-009	30	69	135.64	220.15	95.89	275.79
9	15-April-2019	DD15W	ViB-200-011	40	69	66.13	95.07	59.70	130.29
10		DD15W	ViB-25-005	60	69	78.12	73.37	48.24	117.53
11		DD14E	ViB-500-009	30	78	82.40	152.06	147.68	227.42
12	10.1.1.1.0010	DD14E	ViB-200-009	40	78	7.38	139.16	62.22	152.61
13	18-April-2019	DD16E	ViB-200-011	30	77	141.29	258.45	124.04	319.60
14		DD16E	ViB-25-007	70	77	86.05	39.08	30.45	99.29
15		DD16W	ViB-500-009	30	58	121.16	147.78	86.75	209.87
16	05 4	DD16W	ViB-200-011	40	58	95.26	108.17	116.35	185.24
17	25-April-2019	DD16W	ViB-200-009	45	58	7.70	150.57	57.88	161.50
18		DD16W	ViB-25-005	60	58	75.88	77.36	64.96	126.34
19	07 A	DD13W	ViB-200-011	40	55	70.45	140.32	129.82	203.73
20	27-April-2019	DD15E	ViB-25-007	70	85	36.14	40.74	61.02	81.79
21	30-April-2019	DD15W	ViB-25-005	70	66	63.07	56.62	58.47	102.97
22	•	DD15W	ViB-200-009	40	61	4.41	84.64	81.79	117.78
23		DD14E	ViB-200-011	50	134	96.26	106.88	117.53	185.75
24	07-Mei-2019	DD14E	ViB-25-005	70	134	75.67	60.38	50,50	109.19
25		DD14E	ViB-25-007	80	134	28.17	19.57	28.22	44.42

No.	Tanggal	Lokasi	Alat	Jarak (R)	PVS	Q		SD	
Urut	Tanggar	LUKASI	- mai	Jarak (II)	(mm/s)	(kg/dl)	(m/kg ^{1/2})	(m/kg ^{2/3})	(m/kg ^{1/3})
1		DD14E	ViB-500-009	20	405.55	67	2.44	1.60	5.67
2	30-Maret-2019	DD14E	ViB-200-009	30	249.03	67	3.67	2.41	8.50
3		DD14E	ViB-25-005	40	223.78	67	4.89	3.21	11.33
4	04-April-2010	DD11E	ViB-500-009	30	200.49	87	3.21	2.05	7.85
5	04-April-2019	DD11E	ViB-200-011	40	154.86	87	4.28	2.74	10.47
6	19-Annil-9010	DD14W	ViB-25-005	40	99.45	70	4.78	3.13	11.18
7	12-April-2019	DD13W	ViB-25-007	40	98.52	56	5.35	3.57	11.96
8		DD15W	ViB-500-009	30	250.28	69	3.61	2.36	8.42
9	15-April-2019	DD15W	ViB-200-011	40	126.55	69	4.82	3.15	11.23
10		DD15W	ViB-25-005	60	101.10	69	7.22	4.73	16.85
11		DD14E	ViB-500-009	30	194.68	78	3.40	2.20	8.12
12	10 4	DD14E	ViB-200-009	40	148.34	78	4.53	2.93	10.83
13	18-April-2019	DD16E	ViB-200-011	30	267.40	77	3.42	2.21	8.15
14		DD16E	ViB-25-007	70	96.90	77	7.98	5.17	19.02
15		DD16W	ViB-500-009	30	214.02	58	3.94	2.62	8.87
16	05 Amril 0010	DD16W	ViB-200-011	40	182.06	58	5.25	3.50	11.83
17	25-April-2019	DD16W	ViB-200-009	45	157.71	58	5.91	3.94	13.31
18		DD16W	ViB-25-005	60	118.55	58	7.88	5.25	17.75
19	97-Annil-9010	DD13W	ViB-200-011	40	196.37	55	5.39	3.61	12.02
20	27-April-2019	DD15E	ViB-25-007	70	76.70	85	7.59	4.87	18.46
21	30-April-2019	DD15W	ViB-25-005	70	94.46	66	8.62	5.67	19.92
22	-	DD15W	ViB-200-009	40	116.24	61	5.12	3.40	11.65
23	07-14	DD14E	ViB-200-011	50	180.98	134	4.32	2.65	11.50
24	07-IMet-2019	DD14E	ViB-25-005	70	96.46	134	6.05	3.71	16.11
25		DD14E	ViB-25-007	80	80.17	134	6.91	4.23	18.41

Tabel 5. Data Nilai Scaled Distance

Tabel 6. Nilai Peak Particle Velocity Hasil Pengukuran

No.	Tanggal	Lokari	Alat	Jarak (R)	DVS (mm/a)
Urut	Tanggar	LABARI	THAI.	oaran (ii)	1 VIS (IIIII) 8/
1		DD14E	ViB-500-009	20	408.65
2	30-Maret-2019	DD14E	ViB-200-009	30	267.65
3		DD14E	ViB-25-005	40	232.37
4	04. Annil 2010	DD11E	ViB-500-009	30	218.01
5	04-April-2015	DD11E	ViB-200-011	40	177.45
6	19. Annii - 9010	DD14W	ViB-25-005	40	107.96
7	12-April-2019	DD13W	ViB-25-007	40	109.05
8		DD15W	ViB-500-009	30	275.79
9	15-April-2019	DD15W	ViB-200-011	40	130.29
10		DD15W	ViB-25-005	60	117.53
11		DD14E	ViB-500-009	30	227.42
12	18. Anni 1.9019	DD14E	ViB-200-009	40	152.61
13	10-April-2015	DD16E	ViB-200-011	30	319.60
14		DD16E	ViB-25-007	70	99.29
15		DD16W	ViB-500-009	30	209.87
16	25. Annil 2010	DD16W	ViB-200-011	40	185.24
17	20-April-2019	DD16W	ViB-200-009	45	161.50
18		DD16W	ViB-25-005	60	126.34
19	27. Appril-2019	DD13W	ViB-200-011	40	203.73
20	21-14011-2013	DD15E	ViB-25-007	70	81.79
21	30-April-2019	DD15W	ViB-25-005	70	102.97
22		DD15W	ViB-200-009	40	117.78
23	07.Mai.2010	DD14E	ViB-200-011	50	185.75
24	07-Mer-2019	DD14E	ViB-25-005	70	109.19
25		DD14E	ViB-25-007	80	44.42

Copyright © 2018, Jurnal Geomine, Page: 129

Peak Particle Velocity Menggunakan Rumus Empiris

Setelah mendapat data aktual *peak particle velocity*, dapat dicari prediksi PPV dengan data *charging* bahan peledak maksimum per *delay* dan jarak antara titik peledakan dari alat *monitoring*. Ada beberapa cara mencari PPV berdasarkan beberapa rumus dibawah ini (Tabel 7).

Tabel 7. Rumus Prediksi Berdasarkan Data Aktual				
Nama Prediksi Rumus	Rumus			
USBM (Duvall & Fogelson, 1962)	$K\left(\frac{R}{Q^{1/2}}\right)^{-b}$			
Langefors and Kihlstrom, 1963.	$(\sqrt{(\frac{Q}{R^{2/3}})})^b$			
Ambraseys -Hendron, 1968	$\frac{\left(\frac{R}{Q^{\frac{1}{3}}}\right)^{-b}}{Q^{\frac{1}{3}}}$			

Dengan menggunakan rumus prediksi diatas, nilai konstanta k dan b dapat dicari menggunakan regresi linier. Regresi linier merupakan perbandingan antara *scaled distance* dari masing-masing rumus dengan PPV menggunakan log sebagai normalisasi data. Nilai k dan b pada masing-masing prediksi dapat dilihat pada Tabel 8 berikut.

Taber 6. Milar & dall b dall Se	tap Rumus Emphris
Nama Prediksi Rumus	Rumus
USBM (Duvall & Fogelson, 1962)	$PPV = 1105.9 \left(\frac{R}{O^{1/2}}\right)^{-1.218}$
Langefors and Kihlstrom, 1963.	$PPV = 623.8 \sqrt{\left(\frac{Q}{R^{2/3}}\right)}^{-1.177}$
Ambraseys -Hendron, 1968	$PPV = 3432 \left(\frac{R}{Q^{\frac{1}{3}}}\right)^{-1.252}$

Tabel 8. Nilai k dan b dari Setiap Rumus Empiris

Grafik regresi linier membutuhkan beberapa data sebagai acuan untuk membuat grafik. Apabila data yang dimiliki banyak, maka prediksi akan lebih bervariasi. Dari data yang didapat, berikut grafik *scaled distance vs PPV* dari tiga rumus empiris dapat dilihat (Gambar 5).

Gambar 5. Grafik Scaled Distance vs PPVDari Tiga Rumus Empiris

KESIMPULAN

Peak Particle Velocity (PPV) maksimum dari hasil pengukuran getaran peledakan adalah peledakan tanggal 29 Maret 2019 dengan jarak pengukuran 20 meter dengan nilai PPV adalah 335.02 mm/s. dan isian bahan maksimum peledak 67 kg/*delay*. Hubungan PPV dan Scaled distance (SD) dengan menggunakan tiga persamaan dinyatakan sebagai berikut, USBM (Duvall & Fogelson, 1962) $PVS = 1105.9 \left(\frac{R}{Q^{1/2}}\right)^{-1.218}$, Langefors and Kihlstrom $PVS = 623.8 \sqrt{\left(\frac{Q}{R^{2/3}}\right)}^{-1.177}$, Ambraseys-Hendron, $PVS = 3432 \left(\frac{R}{Q^3}\right)^{-1.252}$

UCAPAN TERIMAKASIH

Penulis mengucapkan banyak terima kasih kepada PT Freeport Indonesia Tembagapura-Papua atas segala bantuannya baik moril maupun materil sehingga penulis dapat menyelesaikan penelitian ini.

REFERENSI

- Arora, S., and Day, K. 2010. Estimation of near-field peak particle velocity: A mathematical model. *Jurnal of geology and Mining Research Vol. 2 (4).* Pp. 68-73.
- Bieniawski, ZT. 1990. *Tunnel Desing By Rock Mass Classifications*. Departement of the Army US Army Corps of Engineers. Washington, DC: 1-74.
- Fiin, O., Ulf, N., Mats, O., Ingvar, B., Lrs, G., and Hendrik, G. 2004. Where does the Explosive Energy in Rock Blasting Go? *Science and Technology of Energetic Material*. Vol. 65. No. 2. Pp. 54-63.
- Kumar, R., Choudhury, D., and Bhargava, K. 2016. Determination of Blast-induced Ground Vibration Equations for Rocks Using Mechanical and Geological Properties. *Journal of Rock Mechanics and Geotechnical Engineering.* Pp. 341-349.
- Nicholls, H.R., Johnson, C.F., Duvall, W.I. 1971. *Blasting Vibrations and Their Effects on Structures.* United States Departement of the interior Bureau of Mines, Bulletin 656.
- Olofsson. S.O. 1988. Applied Explosives Technology for Constuction and Mining. Published by Applex, Sweden. 303 p.
- Parida, A. and Mishra, M.K. 2015. Blast Vibration Analysis by Different Predictor Approaches – A Comparison. *Proceedia Earh and Planetery Science, Vol. 11.* Published by Elsevier. Pp. 337-345.
- Persson, P.A, Holmberg, T., and Lee, J. 1992. *Rock Blasting and Explosives Engineering.* CRC Press. London.
- Rai, M.A., Wattimena, R.K., Kramadibrata, S., 2014. Mekanika Batuan. Laboratorium Geomekanika dan Peralatan Tambang. ITB. Bandung.
- Rustan, A., Naarttijarvi, T., and Ludving, B. 1985. Controlled blasting in hard inteste jointed rock in tunnels. *The Canadian Institute of Mining Bulleting.* Vol.178, No.884. Pp 63-68.
- Snodgrass, J.J. and Siskind, D.E. 1974. *Vibration from Underground Blasting.* Report of Investigation 7937, United Stated Departeman of the Interior, Bureau of Mines, USA.
- Singh, B. and Roy, P.P. 1993. *Blasting in Ground Excavations and Mines.* A.A. Balkema, Rotterdam. 177 p.
- Singh, T. N. 2013. Artificial neural network approach for prediction and control of ground vibrations in mines. Journal Mining Technology, Transaction of the Institutions of Mining and Metallurgy: Vol. 113. Pp. 251-256.
- Tarano, J., Rodriguez, R., Diego, I., Rivas, J.M., Casal, M.D. 2006. FEM models including randomness and its application to the blasting vibrations prediction. *Computers and Geotechnics, Vol. 33.* Pp 15-28.

Wahyudi, S., Shimada, H., Simagunsong, G.M., Sasaoka, T., Matsui, K., Kramadibrata, S., dan Sulistianto, B. 2011. A review study of predictive model blast vibration attenuation equation by using neural network as an evaluator. *International Journal of Mining, Reclamation and Environment. Vol. 25.* Pp. 69-85.